Численный анализ теплообмена в тканях печени при СВЧ-абляции с использованием одной, двух, трех и четырех щелей
- Authors: Poorreza E.1
-
Affiliations:
- Sahand University of Technology
- Issue: Vol 62, No 1 (2024)
- Pages: 131-142
- Section: New energy and modern technologies
- URL: https://gynecology.orscience.ru/0040-3644/article/view/653038
- DOI: https://doi.org/10.31857/S0040364424010152
- ID: 653038
Cite item
Abstract
В работе рассмотрена СВЧ-терапия – популярный медицинский метод лечения патологических тканей человека, содержащих раковые опухоли. Методом конечных элементов с использованием двумерного анализа сравниваются модели коаксиальной антенны с одной, двумя, тремя и четырьмя щелями. Представленные модели основаны на волновом уравнении электромагнетизма в режиме поперечных магнитных волн в сочетании с уравнением Пеннеса в условиях переходного состояния. Кроме того, модель учитывает термоэлектрические свойства тканей человека при рабочей частоте антенны 2.45 ГГц. Представлены результаты моделирования для различных конфигураций многощелевых антенн. Проведен сравнительный конечно-элементный анализ межтканевой СВЧ-абляции в ткани печени с использованием антенн с одной, двумя, тремя и четырьмя щелями. Согласно представленным результатам, доля поврежденной ткани, подвергающейся воздействию, уменьшается за счет увеличения количества щелей. В случае четырех щелей наблюдаются сферические зоны плавления с меньшим повреждением нормальных тканей, особенно в осевом направлении.
Full Text

About the authors
E. Poorreza
Sahand University of Technology
Author for correspondence.
Email: elnaz.poorreza@gmail.com
Faculty of Electrical engineering
Iran, Islamic Republic of, TabrizReferences
- Selmi M., Bin Dukhyil A.A., Belmabrouk H. Numerical Analysis of Human Cancer Therapy Using Microwave Ablation // Appl. Sci. 2020. V. 10. № 1. P. 211.
- Lau W.Y., Leung T.W.T., Yu S.C.H., Ho S.K.W. Percutaneous Local Ablative Therapy for Hepatocellular Carcinoma: A Review and Look Into the Future // Ann. Surg. 2003. V. 237. № 2. P. 171.
- Ильина И.В., Ситников Д.С., Агранат М.Б. Современное состояние исследований влияния терагерцового излучения на живые биологические системы // ТВТ. 2018. Т. 56. № 5. С. 814.
- Kabiri S., Rezaei F. Liver Cancer Treatment with Integration of Laser Emission and Microwave Irradiation with the Aid of Gold Nanoparticles // Sci. Rep. 2022. V. 12. 9271.
- Keangin P., Rattanadecho P., Wessapan T. An Analysis of Heat Transfer in Liver Tissue During Microwave Ablation Using Single and Double Slot Antenna // Int. Commun. Heat Mass Transfer. 2011. V. 38. № 6. P. 757.
- Kuang M., Lu M.D., Xie X.Y., Xu H.X., Mo L.Q., Liu G.J., Xu Z.F., Zheng Y.L., Liang J.Y. Liver Cancer: Increased Microwave Delivery to Ablation Zone with Cooled-shaft Antenna – Experimental and Clinical Studies // Radiology. 2007. V. 242. № 3. P. 914.
- Ablative Techniques (Percutaneous). Thermal Ablative Techniques. In: Percutaneous Tumor Ablation in Medical Radiology / Eds. Vogl T., Helmberger T., Mack M., Reiser M. Berlin–Heidelberg–N.Y.: Springer, 2008. P. 7.
- Garrean S., Hering J., Saied A., Hoopes P., Helton W., Ryan T., Espat N. Ultrasound Monitoring of a Novel Microwave Ablation (MWA) Device in Porcine Liver: Lessons Learned and Phenomena Observed on Ablative Effects Near Major Intrahepatic Vessels // J. Gastrointest. Surg. 2009. V. 13. P. 334.
- Talaee M.R., Kabiri A. Analytical Solution of Hyperbolic Bioheat Equation in Spherical Coordinated Applied in Radiofrequency Heating // J. Mech. Med. Biol. 2017. V. 17. № 4. P. 1750072.
- Deshazer G., Prakash P., Merck D., Haemmerich D. Experimental Measurement of Microwave Ablation Heating Pattern and Comparison to Computer Simulations // Int. J. Hyperthermia. 2017. V. 33. № 1. P. 74.
- Lin S.-M., Li C.-Y. Semi-analytical Solution of Bio-heat Conduction for Multi-layers Skin Subjected to Laser Heating and Fluid Cooling // J. Mech. Med. Biol. 2017. V. 17. № 2. P. 1750029.
- Kabiri A., Talaee M.R. Theoretical Investigation of Thermal Wave Model of Microwave Ablation Applied in Prostate Cancer Therapy // Heat Mass Transfer. 2019. V. 55. № 8. P. 2199.
- Wang S., Tian R., Zhang X., Cheng G., Yu P., Chang J., Chen X. Beyond Photo: Xdynamic Therapies in Fighting Cancer // Adv. Mater. 2021. V. 33. № 25. 2007488.
- Whelan W.M., Davidson S., Chin L., Vitkin I.I. A Novel Strategy For Monitoring Laser Thermal Therapy Based on Changes in Optothermal Properties of Heated Tissues // Int. J. Thermophys. 2005. V. 26. № 1. P. 233.
- Kinoshita T., Iwamoto E., Tsuda H., Seki K. Radiofrequency Ablation as Local Therapy for Early Breast Carcinomas // Breast Cancer. 2011. V. 18. P. 10.
- Jiang Y., Zhao J., Li W., Yang Y., Liu J., Qian Z. A Coaxial Slot Antenna with Frequency of 433 MHz for Microwave Ablation Therapies: Design, Simulation, and Experimental Research // J. Med. Biol. Eng. 2017. V. 55. P. 2027.
- Vaz R.H., Pereira J.M., Ervilha A.R., Pereira J.C. Simulation and Uncertainty Quantification in High Temperature Microwave Heating // Appl. Therm. Eng. 2014. V. 70. № 1. P. 1025.
- Saccomandi P., Schena E., Massaroni C., Fong Y., Grasso R.F., Giurazza F., Zobel B.B., Buy X., Palussiere J., Cazzato R.L. Temperature Monitoring During Microwave Ablation in ex vivo Porcine Livers // Eur. J. Surg. Oncol. (EJSO). 2015. V. 41. № 12. P. 1699.
- Hoffmann R., Rempp H., Erhard L., Blumenstock G., Pereira P.L., Claussen C.D., Clasen S. Comparison of Four Microwave Ablation Devices: An Experimental Study in ex Vivo Bovine Liver // Radiology. 2013. V. 268. № 1. P. 89.
- Lebedev Y.A. Microwave Discharges in Liquids: Fields of Applications // High Temp. 2018. V. 56. № 5. P. 811.
- Хабибуллин И.Л., Хамитов А.Т., Назмутдинов Ф.Ф. Моделирование процессов тепло- и массопереноса в пористых средах при фазовых превращениях, инициируемых микроволновым нагревом // ТВТ. 2014. Т. 52. № 5. С. 727.
- Пащина А.С., Дегтярь В.Г., Калашников С.Т. СВЧ-антенна на основе импульсной плазменной струи // ТВТ. 2015. Т. 53. № 6. С. 839.
- Karampatzakis A., Kühn S., Tsanidis G., Neufeld E., Samaras T., Kuster N. Heating Characteristics of Antenna Arrays Used in Microwave Ablation: A Theoretical Parametric Study // Comput. Biol. Med. 2013. V. 43. № 10. P. 1321.
- Medina-Franco H., Soto-Germes S., Ulloa-Gomez J.L., Romero-Trejo C., Uribe N., Ramirez-Alvarado C.A., Robles-Vidal C. Radiofrequency Ablation of Invasive Breast Carcinomas: A Phase II Trial // Ann. Surg. Oncol. 2008. V. 15. P. 1689.
- Keangin P., Rattanadecho P. Analysis of Heat Transport on Local Thermal Non-equilibrium in Porous Liver During Microwave Ablation // Int. J. Heat Mass Transfer. 2013. V. 67. P. 46.
- Keangin P., Rattanadecho P. A Numerical Investigation of Microwave Ablation on Porous Liver Tissue // Adv. Mech. Eng. 2018. V. 10. № 8. https://doi.org/10.117/1687814017734133
- Rattanadecho P., Keangin P. Numerical Study of Heat Transfer and Blood Flow in Two-layered Porous Liver Tissue During Microwave Ablation Process Using Single and Double Slot Antenna // Int. J. Heat Mass Transfer. 2013. V. 58. P. 457.
- Curto S., Taj-Eldin M., Fairchild D., Prakash P. Microwave Ablation at 915 MHz vs 2.45 GHz: A Theoretical and Experimental Investigation // Med. Phys. 2015. V. 42. № 11. P. 6152.
- Biffi Gentili G., Ignesti C., Tesi V. Development of a Novel Switched-mode 2.45 GHz Microwave Multiapplicator Ablation System // Int. J. Microwave Sci. Technol. 2014. V. 2014. 973736.
- Cepeda Rubio M.F.J., Guerrero López G.D., Valdés Perezgasga F., Flores García F., Vera Hernández A., Leija Salas L. Computer Modeling for Microwave Ablation in Breast Cancer Using a Coaxial Slot Antenna // Int. J. Thermophys. 2015. V. 36. № 10–11. P. 2687.
- Radjenović B., Sabo M., Šoltes L., Prnova M., Čičak P., Radmilović-Radjenović M. On Efficacy of Microwave Ablation in the Thermal Treatment of an Early-stage Hepatocellular Carcinoma // Cancers. 2021. V. 13. № 22. P. 5784.
- Shock S.A., Meredith K., Warner T.F., Sampson L.A., Wright A.S., Winter III T.C., Mahvi D.M., Fine J.P., Lee F.T. Jr. Microwave Ablation with Loop Antenna: In Vivo Porcine Liver Model // Radiology. 2004. V. 231. № 1. P. 143.
- Wu X., Liu B., Xu B. Theoretical Evaluation of High frequency Microwave Ablation Applied in Cancer Therapy // Appl. Therm. Eng. 2016. V. 107. P. 501.
- Hadizafar L., Azarmanesh M.N., Ojaroudi M. Enhanced Bandwidth Double-fed Microstrip Slot Antenna with a Pair of L-Shaped Slots // Prog. Electromagn. Res. C. 2011. V. 18. P. 47. http://dx.doi.org/10.2528/PIERC10092812
- Singh S., Repaka R. Effect of Different Breast Density Compositions on Thermal Damage of Breast Tumor During Radiofrequency Ablation // Appl. Therm. Eng. 2017. V. 125. P. 443.
- Pennes H.H. Analysis of Tissue and Arterial Blood Temperatures in the Resting Human Forearm // J. Appl. Physiol. 1998. V. 85. № 1. P. 5.
- Choi S.Y., Kwak B.K., Seo T. Mathematical Modeling of Radiofrequency Ablation for Varicose Veins // Comput. Math. Methods Med. 2014. V. 2014. 485353.
- Yang D., Converse M.C., Mahvi D.M., Webster J.G. Expanding the Bioheat Equation to Include Tissue Internal Water Evaporation During Heating // IEEE. Trans. Biomed. Eng. 2007. V. 54. № 8. P. 1382.
- Wessapan T., Srisawatdhisukul S., Rattanadecho P. Specific Absorption Rate and Temperature Distributions in Human Head Subjected to Mobile Phone Radiation at Different Frequencies // Int. J. Heat Mass Transfer. 2012. V. 55. № 1–3. P. 347.
- Arathy K., Sudarsan N., Antony L., Ansari S., Malini K.A. Early Detection and Parameter Estimation of Tongue Tumour Using Contact Thermometry in a Closed Mouth // Int. J. Thermophys. 2022. V. 43. № 3. 34.
- Lyu Ch.-y., Zhan R.-j. Constitutive Equations Developed for Modeling of Heat Conduction in Bio-tissues: A Review // Int. J. Thermophys. 2021. V. 42. № 2. 27.
- Valvano J.W., Cochran J., Diller K.R. Thermal Conductivity and Diffusivity of Biomaterials Measured with Self-heated Thermistors // Int. J. Thermophys. 1985. V. 6. P. 301.
- Gas P. Study on Interstitial Microwave Hyperthermia with Multi-slot Coaxial Antenna // arXiv:2008.02032 [physics.med-ph]. 2020.
Supplementary files
