Численный анализ теплообмена в тканях печени при СВЧ-абляции с использованием одной, двух, трех и четырех щелей

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

В работе рассмотрена СВЧ-терапия – популярный медицинский метод лечения патологических тканей человека, содержащих раковые опухоли. Методом конечных элементов с использованием двумерного анализа сравниваются модели коаксиальной антенны с одной, двумя, тремя и четырьмя щелями. Представленные модели основаны на волновом уравнении электромагнетизма в режиме поперечных магнитных волн в сочетании с уравнением Пеннеса в условиях переходного состояния. Кроме того, модель учитывает термоэлектрические свойства тканей человека при рабочей частоте антенны 2.45 ГГц. Представлены результаты моделирования для различных конфигураций многощелевых антенн. Проведен сравнительный конечно-элементный анализ межтканевой СВЧ-абляции в ткани печени с использованием антенн с одной, двумя, тремя и четырьмя щелями. Согласно представленным результатам, доля поврежденной ткани, подвергающейся воздействию, уменьшается за счет увеличения количества щелей. В случае четырех щелей наблюдаются сферические зоны плавления с меньшим повреждением нормальных тканей, особенно в осевом направлении.

Full Text

Restricted Access

About the authors

E. Poorreza

Sahand University of Technology

Author for correspondence.
Email: elnaz.poorreza@gmail.com

Faculty of Electrical engineering

Iran, Islamic Republic of, Tabriz

References

  1. Selmi M., Bin Dukhyil A.A., Belmabrouk H. Numerical Analysis of Human Cancer Therapy Using Microwave Ablation // Appl. Sci. 2020. V. 10. № 1. P. 211.
  2. Lau W.Y., Leung T.W.T., Yu S.C.H., Ho S.K.W. Percutaneous Local Ablative Therapy for Hepatocellular Carcinoma: A Review and Look Into the Future // Ann. Surg. 2003. V. 237. № 2. P. 171.
  3. Ильина И.В., Ситников Д.С., Агранат М.Б. Современное состояние исследований влияния терагерцового излучения на живые биологические системы // ТВТ. 2018. Т. 56. № 5. С. 814.
  4. Kabiri S., Rezaei F. Liver Cancer Treatment with Integration of Laser Emission and Microwave Irradiation with the Aid of Gold Nanoparticles // Sci. Rep. 2022. V. 12. 9271.
  5. Keangin P., Rattanadecho P., Wessapan T. An Analysis of Heat Transfer in Liver Tissue During Microwave Ablation Using Single and Double Slot Antenna // Int. Commun. Heat Mass Transfer. 2011. V. 38. № 6. P. 757.
  6. Kuang M., Lu M.D., Xie X.Y., Xu H.X., Mo L.Q., Liu G.J., Xu Z.F., Zheng Y.L., Liang J.Y. Liver Cancer: Increased Microwave Delivery to Ablation Zone with Cooled-shaft Antenna – Experimental and Clinical Studies // Radiology. 2007. V. 242. № 3. P. 914.
  7. Ablative Techniques (Percutaneous). Thermal Ablative Techniques. In: Percutaneous Tumor Ablation in Medical Radiology / Eds. Vogl T., Helmberger T., Mack M., Reiser M. Berlin–Heidelberg–N.Y.: Springer, 2008. P. 7.
  8. Garrean S., Hering J., Saied A., Hoopes P., Helton W., Ryan T., Espat N. Ultrasound Monitoring of a Novel Microwave Ablation (MWA) Device in Porcine Liver: Lessons Learned and Phenomena Observed on Ablative Effects Near Major Intrahepatic Vessels // J. Gastrointest. Surg. 2009. V. 13. P. 334.
  9. Talaee M.R., Kabiri A. Analytical Solution of Hyperbolic Bioheat Equation in Spherical Coordinated Applied in Radiofrequency Heating // J. Mech. Med. Biol. 2017. V. 17. № 4. P. 1750072.
  10. Deshazer G., Prakash P., Merck D., Haemmerich D. Experimental Measurement of Microwave Ablation Heating Pattern and Comparison to Computer Simulations // Int. J. Hyperthermia. 2017. V. 33. № 1. P. 74.
  11. Lin S.-M., Li C.-Y. Semi-analytical Solution of Bio-heat Conduction for Multi-layers Skin Subjected to Laser Heating and Fluid Cooling // J. Mech. Med. Biol. 2017. V. 17. № 2. P. 1750029.
  12. Kabiri A., Talaee M.R. Theoretical Investigation of Thermal Wave Model of Microwave Ablation Applied in Prostate Cancer Therapy // Heat Mass Transfer. 2019. V. 55. № 8. P. 2199.
  13. Wang S., Tian R., Zhang X., Cheng G., Yu P., Chang J., Chen X. Beyond Photo: Xdynamic Therapies in Fighting Cancer // Adv. Mater. 2021. V. 33. № 25. 2007488.
  14. Whelan W.M., Davidson S., Chin L., Vitkin I.I. A Novel Strategy For Monitoring Laser Thermal Therapy Based on Changes in Optothermal Properties of Heated Tissues // Int. J. Thermophys. 2005. V. 26. № 1. P. 233.
  15. Kinoshita T., Iwamoto E., Tsuda H., Seki K. Radiofrequency Ablation as Local Therapy for Early Breast Carcinomas // Breast Cancer. 2011. V. 18. P. 10.
  16. Jiang Y., Zhao J., Li W., Yang Y., Liu J., Qian Z. A Coaxial Slot Antenna with Frequency of 433 MHz for Microwave Ablation Therapies: Design, Simulation, and Experimental Research // J. Med. Biol. Eng. 2017. V. 55. P. 2027.
  17. Vaz R.H., Pereira J.M., Ervilha A.R., Pereira J.C. Simulation and Uncertainty Quantification in High Temperature Microwave Heating // Appl. Therm. Eng. 2014. V. 70. № 1. P. 1025.
  18. Saccomandi P., Schena E., Massaroni C., Fong Y., Grasso R.F., Giurazza F., Zobel B.B., Buy X., Palussiere J., Cazzato R.L. Temperature Monitoring During Microwave Ablation in ex vivo Porcine Livers // Eur. J. Surg. Oncol. (EJSO). 2015. V. 41. № 12. P. 1699.
  19. Hoffmann R., Rempp H., Erhard L., Blumenstock G., Pereira P.L., Claussen C.D., Clasen S. Comparison of Four Microwave Ablation Devices: An Experimental Study in ex Vivo Bovine Liver // Radiology. 2013. V. 268. № 1. P. 89.
  20. Lebedev Y.A. Microwave Discharges in Liquids: Fields of Applications // High Temp. 2018. V. 56. № 5. P. 811.
  21. Хабибуллин И.Л., Хамитов А.Т., Назмутдинов Ф.Ф. Моделирование процессов тепло- и массопереноса в пористых средах при фазовых превращениях, инициируемых микроволновым нагревом // ТВТ. 2014. Т. 52. № 5. С. 727.
  22. Пащина А.С., Дегтярь В.Г., Калашников С.Т. СВЧ-антенна на основе импульсной плазменной струи // ТВТ. 2015. Т. 53. № 6. С. 839.
  23. Karampatzakis A., Kühn S., Tsanidis G., Neufeld E., Samaras T., Kuster N. Heating Characteristics of Antenna Arrays Used in Microwave Ablation: A Theoretical Parametric Study // Comput. Biol. Med. 2013. V. 43. № 10. P. 1321.
  24. Medina-Franco H., Soto-Germes S., Ulloa-Gomez J.L., Romero-Trejo C., Uribe N., Ramirez-Alvarado C.A., Robles-Vidal C. Radiofrequency Ablation of Invasive Breast Carcinomas: A Phase II Trial // Ann. Surg. Oncol. 2008. V. 15. P. 1689.
  25. Keangin P., Rattanadecho P. Analysis of Heat Transport on Local Thermal Non-equilibrium in Porous Liver During Microwave Ablation // Int. J. Heat Mass Transfer. 2013. V. 67. P. 46.
  26. Keangin P., Rattanadecho P. A Numerical Investigation of Microwave Ablation on Porous Liver Tissue // Adv. Mech. Eng. 2018. V. 10. № 8. https://doi.org/10.117/1687814017734133
  27. Rattanadecho P., Keangin P. Numerical Study of Heat Transfer and Blood Flow in Two-layered Porous Liver Tissue During Microwave Ablation Process Using Single and Double Slot Antenna // Int. J. Heat Mass Transfer. 2013. V. 58. P. 457.
  28. Curto S., Taj-Eldin M., Fairchild D., Prakash P. Microwave Ablation at 915 MHz vs 2.45 GHz: A Theoretical and Experimental Investigation // Med. Phys. 2015. V. 42. № 11. P. 6152.
  29. Biffi Gentili G., Ignesti C., Tesi V. Development of a Novel Switched-mode 2.45 GHz Microwave Multiapplicator Ablation System // Int. J. Microwave Sci. Technol. 2014. V. 2014. 973736.
  30. Cepeda Rubio M.F.J., Guerrero López G.D., Valdés Perezgasga F., Flores García F., Vera Hernández A., Leija Salas L. Computer Modeling for Microwave Ablation in Breast Cancer Using a Coaxial Slot Antenna // Int. J. Thermophys. 2015. V. 36. № 10–11. P. 2687.
  31. Radjenović B., Sabo M., Šoltes L., Prnova M., Čičak P., Radmilović-Radjenović M. On Efficacy of Microwave Ablation in the Thermal Treatment of an Early-stage Hepatocellular Carcinoma // Cancers. 2021. V. 13. № 22. P. 5784.
  32. Shock S.A., Meredith K., Warner T.F., Sampson L.A., Wright A.S., Winter III T.C., Mahvi D.M., Fine J.P., Lee F.T. Jr. Microwave Ablation with Loop Antenna: In Vivo Porcine Liver Model // Radiology. 2004. V. 231. № 1. P. 143.
  33. Wu X., Liu B., Xu B. Theoretical Evaluation of High frequency Microwave Ablation Applied in Cancer Therapy // Appl. Therm. Eng. 2016. V. 107. P. 501.
  34. Hadizafar L., Azarmanesh M.N., Ojaroudi M. Enhanced Bandwidth Double-fed Microstrip Slot Antenna with a Pair of L-Shaped Slots // Prog. Electromagn. Res. C. 2011. V. 18. P. 47. http://dx.doi.org/10.2528/PIERC10092812
  35. Singh S., Repaka R. Effect of Different Breast Density Compositions on Thermal Damage of Breast Tumor During Radiofrequency Ablation // Appl. Therm. Eng. 2017. V. 125. P. 443.
  36. Pennes H.H. Analysis of Tissue and Arterial Blood Temperatures in the Resting Human Forearm // J. Appl. Physiol. 1998. V. 85. № 1. P. 5.
  37. Choi S.Y., Kwak B.K., Seo T. Mathematical Modeling of Radiofrequency Ablation for Varicose Veins // Comput. Math. Methods Med. 2014. V. 2014. 485353.
  38. Yang D., Converse M.C., Mahvi D.M., Webster J.G. Expanding the Bioheat Equation to Include Tissue Internal Water Evaporation During Heating // IEEE. Trans. Biomed. Eng. 2007. V. 54. № 8. P. 1382.
  39. Wessapan T., Srisawatdhisukul S., Rattanadecho P. Specific Absorption Rate and Temperature Distributions in Human Head Subjected to Mobile Phone Radiation at Different Frequencies // Int. J. Heat Mass Transfer. 2012. V. 55. № 1–3. P. 347.
  40. Arathy K., Sudarsan N., Antony L., Ansari S., Malini K.A. Early Detection and Parameter Estimation of Tongue Tumour Using Contact Thermometry in a Closed Mouth // Int. J. Thermophys. 2022. V. 43. № 3. 34.
  41. Lyu Ch.-y., Zhan R.-j. Constitutive Equations Developed for Modeling of Heat Conduction in Bio-tissues: A Review // Int. J. Thermophys. 2021. V. 42. № 2. 27.
  42. Valvano J.W., Cochran J., Diller K.R. Thermal Conductivity and Diffusivity of Biomaterials Measured with Self-heated Thermistors // Int. J. Thermophys. 1985. V. 6. P. 301.
  43. Gas P. Study on Interstitial Microwave Hyperthermia with Multi-slot Coaxial Antenna // arXiv:2008.02032 [physics.med-ph]. 2020.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Schematic diagram of a coaxial antenna inserted into biological tissue (a), its 2D model with dimensions (b), and a cross-section of the antenna with several slots (c).

Download (197KB)
3. Fig. 2. Location of cracks and tumor.

Download (158KB)
4. Fig. 3. Boundary conditions of the problem.

Download (122KB)
5. Fig. 4. Calculation grid for microwave antenna.

Download (227KB)
6. Fig. 5. Comparison of the obtained temperature distributions (1, 3) with the data [38]: 1, 2 – 7 mm; 3, 4 – 9.5 mm.

Download (64KB)
7. Fig. 6. Total energy density absorbed in liver tissue for t = 600 s for antennas with: (a) one, (b) two, (c) three, (d) four slits.

Download (98KB)
8. Fig. 7. Temperature distributions and corresponding three-dimensional temperature fields: (a), (d) one slit; (b), (e) two; (c), (g) three; (d), (h) four.

Download (316KB)
9. Fig. 8. Isotherms in liver tissue in a steady state for antennas with (a) one, (b) two, (c) three, (d) four slits.

Download (199KB)
10. Fig. 9. SA profiles for antennas with (a) one, (b) two, (c) three, (d) four slots.

Download (179KB)
11. Fig. 10. Changes in the proportion of damage over time for antennas with (a) one, (b) two, (c) three, (d) four slots.

Download (120KB)
12. Fig. 11. Comparison of temperature curves for positions: 1 – 5 mm, 2 – 9, 3 – 13, 4 – 17, 5 – 21, 6 – 25; for antennas with (a) one, (b) two, (c) three, (d) four slots.

Download (238KB)
13. Fig. 12. Comparison of the dependencies of the proportion of damage for positions: 1 – 5 mm, 2 – 9, 3 – 13, 4 – 17, 5 – 21, 6 – 25; for antennas with (a) one, (b) two, (c) three, (d) four slots.

Download (237KB)

Copyright (c) 2024 Russian Academy of Sciences