Problem of Injection of Dry Steam into a Reservoir without Condensation in the Well

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Temperature losses along a well string are investigated for the case of dry steam injection in order to determine the possibility of its delivery to the well bottom without condensation. It is assumed that in the rock, the temperature increases with increasing depth according to the geothermal gradient, the steam flow is constant, the steam at the head has a high temperature and is dry, containing no water droplets. On the way to the bottom, the steam temperature decreases, but does not yet reach the saturation point. Heat loss into rock is calculated using the generally accepted formula. The position of the point where steam condensation begins in the well is determined. Calculations are carried out for the most probable flow rates in the fields: 25, 50, 75, and 100 t/day. The heat capacity of dry steam is considered constant, which is acceptable only for low pressures, up to 3–4 MPa. In this case, a formula is proposed for the steam temperature distribution throughout the well string and the problem is solved analytically. However, at elevated pressures, it is necessary to take into account the thermal dependence of the heat capacity of steam and use a numerical method to find the temperature distribution. Based on the calculated variants, a conclusion is made about the possibility of supplying the amount of phase transition heat to the reservoir in full. If the reservoir is highly permeable and lies close to the surface, then we can hope for complete delivery of the phase transition heat to the reservoir. At formation depths greater than 500 m, steam is completely condensed in the well string. The heat of the phase transition enters the rock.

About the authors

M. G. Alishaev

Institute of Geothermal and Renewable Energy Problems—branch of Joint Institute of High Temperatures, Russian Academy of Sciences

Email: alishaev@rambler.ru
367030, Makhachkala, Russia

A. A. Aliverdiev

Institute of Geothermal and Renewable Energy Problems—branch of Joint Institute of High Temperatures, Russian Academy of Sciences; Institute of Physics, Dagestan Federal Research Center, Russian Academy of Sciences

Email: alishaev@rambler.ru
367030, Makhachkala, Russia; 367003, Makhachkala, Russia

V. D. Beibalaev

Institute of Geothermal and Renewable Energy Problems—branch of Joint Institute of High Temperatures, Russian Academy of Sciences; Dagestan State University

Author for correspondence.
Email: alishaev@rambler.ru
367030, Makhachkala, Russia; 367025, Makhachkala, Russia

References

  1. Максутов Р.А., Орлов Г.А., Осипов А.В. Освоение запасов высоковязких нефтей в России. ОАО “РИТЭК” Нефтеотдача // Технологии ТЭК. 2005. № 6. С. 36.
  2. Вахитов Г.Г. Нефтяная промышленность России: вчера, сегодня, завтра. М.: ОАО “ВНИИОЭНГ”, 2012. 400 с.
  3. Байбаков Н.К., Гарушев А.Р. Тепловые методы разработки нефтяных месторождений. М.: Недра, 1988. 343 с.
  4. Kokal S., Al-Kaabi A. Enhanced Oil Recovery: Challenges & Opportunities // World Petroleum Council: Official Publication. 2010. V. 64(1). P. 64.
  5. Mokheimer E.M.A., Hamdy M., Abubakar Z., Shakeel M.R., Habib M.A., Mahmoud M. A Comprehensive Review of Thermal Enhanced Oil Recovery: Techniques Evaluation // J. Energy Resour. Technol. 2019. V. 141. № 3. 030801.
  6. Алишаев М.Г. Уточнение потерь тепла для геотермальной скважины // Изв. РАН. Энергетика. 2010. № 1. С. 36.
  7. Александров А.А., Григорьев Б.А. Таблицы теплофизических свойств воды водяного пара: Спр. М.: МЭИ, 1999. 168 с.
  8. Alishaev M.G., Beybalaev V.D., Aliev R.M., Aliverdiev A.A. Heating and Cooling of Water Injected Into the Well // Thermal Science. 2021. V. 25. Spec. № 2. P. S315.
  9. https://toolbox.tlv.com/global/TI/calculator/
  10. http://twt.mpei.ru/MCS/
  11. Александров А.А., Орлов К.А., Очков В.Ф. Теплофизические свойства рабочих веществ теплоэнергетики. Спр. М.: Изд. дом МЭИ, 2019. 224 с.
  12. Бадертдинова Е.Р., Хайруллин М.Х., Шамсиев М.Н. Термогидродинамические исследования вертикальных нефтяных скважин // ТВТ. 2011. Т. 49. № 5. С. 795.
  13. Магид М.Ш., Авчян Г.М., Дортман Н.Б. и др. Физические свойства горных пород и полезных ископаемых (петрофизика): Спр. геофизика / Под ред. Н.Б. Дортман. М.: Недра, 1976. 527 с.
  14. Emirov S.N., Aliverdiev A.A., Zarichnyak Y.P., Emirov R.M. Studies of the Effective Thermal Conductivity of Sandstone under High Pressure and Temperature // Rock Mech. Rock Eng. 2021. V. 54. P. 3165.
  15. Хайруллин М.Х., Гадильшина В.Р., Шамсиев М.Н., Морозов П.Е., Абдуллин А.И., Бадертдинова Е.Р. Термогидродинамические исследования вертикальных скважин с трещиной гидравлического разрыва пласта // ТВТ. 2017. Т. 55. № 1. С. 129.

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (46KB)
3.

Download (72KB)
4.

Download (73KB)

Copyright (c) 2023 М.Г. Алишаев, А.А. Аливердиев, В.Д. Бейбалаев