First-Principal Study of Proton Transfer in Metal Oxide Perovskite

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The mechanism of proton conduction of defect-free perovskite LaScO3 was investigated by ab initio molecular dynamics. The effects of the initial location and speed of a proton, the electric field, and the temperature of the system on the behavior of a proton in metal oxides of the perovskite type are considered. It is shown that the temperature of the system is the main factor affecting the speed of proton movement. The Arrhenius temperature behavior of proton conduction is found. In the absence of oxygen vacancies, the direction of proton movement in a crystal with a perovskite structure is determined by its interaction with lattice phonons; i.e., proton migration through metal-oxide perovskite has a polaronic character. Better understanding of the nature of proton migration along the perfect perovskite is one of the ways to improve the characteristics of clean energy devices.

About the authors

A. E. Galashev

Institute of High-Temperature Electrochemistry, Ural Branch, Russian Academy of Sciences;
Ural Federal University named after First President of Russia B.N. Yeltsin

Author for correspondence.
Email: galashev@ihte.uran.ru
Yekaterinburg, Russia; Yekaterinburg, Russia

References

  1. Zhang W., Hu Y.H. Progress in Proton-conducting Oxides as Electrolytes for Low-temperature Solid Oxide Fuel Cells: From Materials to Devices // Energy Sci. Eng. 2021. V. 9. P. 984.
  2. Смирнов Б.М. Проблемы глобальной энергетики атмосферы // ТВТ. 2021. Т. 59. № 4. С. 589.
  3. Wang Q., Wei H.-H., Xu Q. A Solid Oxide Fuel Cell (SOFC)-based Biogas-from-waste Generation System for Residential Buildings in China: A Feasibility Study // Sustainability. 2018. V. 10. P. 2395.
  4. Хасхачих В.В., Ларина О.М., Сычев Г.А., Герасимов Г.Я., Зайченко В.М. Пиролитические методы термической переработки твердых коммунальных отходов // ТВТ. 2021. Т. 59. № 3. С. 467.
  5. Kreuer K.D., Paddison S.J., Spohr E., Schuster M. Transport in Proton Conductors for Fuel-cell Applications: Simulations, Elementary Reactions, and Phenomenology // Chem. Rev. 2004. V. 104. P. 4637.
  6. Горелов В.П., Строева А.Ю. Протонные твердые электролиты на основе LаScO3 // Электрохимия. 2012. Т. 48. № 10. С. 1044.
  7. Caramanico N., Di Florio G., Baratto M.C., Cigolotti V., Basosi R., Busi E. Economic Analysis of Hydrogen Household Energy Systems Including Incentives on Energy Communities and Externalities: A Case Study in Italy // Energies. 2021. V. 14. P. 5847.
  8. Inaguma Y., Liquan C., Itoh M., Nakamura T. High Ionic Conductivity in Lithium Lanthanum Titanate // Solid State Commun. 1993. V. 86. P. 689.
  9. Birke P., Scharner S., Huggins R.A., Weppner W. Electrolytic Stability Limit and Rapid Lithium Insertion in the Fast-ion-conducting Li0.29La0.57TiO3 Perovskite-type Compound // J. Electrochem. Soc. 1997. V. 144. P. L167.
  10. Stramare S., Thangadura V., Weppner W. Lithium Lanthanum Titanates: A Review // Chem. Mater. 2003. V. 15. P. 3974.
  11. Zhao G., Suzuki K., Hirayama M., Kanno R. Syntheses and Characterization of Novel Perovskite-type LaScO3-based Lithium Ionic Conductors // Molecules. 2021. V. 26. P. 299.
  12. Hellstrom E.E., Van Gool W. Li Ion Conduction in Li2ZrO3, Li4ZrO4, and LiScO2 // Solid State Ion. 1981. V. 2. P. 59.
  13. Hui W., Chao L., Lu H. et al. Stabilizing Black-phase Formamidinium Perovskite Formation at Room Temperature and High Humidity // Science. 2021. V. 371. № 6536. P. 1359.
  14. Fang Z., Jia L., Yan N. et al. Proton-transfer-induced in situ Defect Passivation for Highly Efficient Wide-bandgap Inverted Perovskite Solar Cells // InfoMat. 2022. V. 4. № 6. e12307.
  15. Perdew J.P., Burke K., Ernzerhof M. Generalized Gradient Approximation Made Simple // Phys. Rev. Lett. 1996. V. 77. P. 3865.
  16. Siesta-pro/siesta-pseudos-and-basis-database. https://www.simuneatomistics.com/siesta-pro/siesta-pseudos-and-basis-database/
  17. Monkhorst H.J., Pack J.D. Special Points for Brillouin-zone Integrations // Phys. Rev. B. 1976. V. 13. P. 5188.
  18. Belova K., Egorova A., Pachina S., Animits I. Crystal Structure, Electrical Conductivity and Hydration of the Novel Oxygen-deficient Perovskite La2ScZnO5.5, Doped with MgO and CaO // Appl. Sci. 2022. V. 12. P. 1181.
  19. Wang C., Xu B.B., Zhang X., Sun W., Chen J., Pan H., Yan M., Jiang Y. Ion Hopping: Design Principles for Strategies to Improve Ionic Conductivity for Inorganic Solid Electrolytes // Small. 2022. V. 18. № 43. 2107064.
  20. Pavone M., Muñoz-García A.B., Ritzmann A.M., Carter E.A. First-principles Study of Lanthanum Strontium Manganite: Insights into Electronic Structure and Oxygen Vacancy Formation // J. Phys. Chem. 2014. V. 118. P. 13346.
  21. Park M.H., Lee D.H., Yang K., Park J.-Y., Yu G.T., Park H.W., Materano M. et al. Review of Defect Chemistry in Fluorite-structure Ferroelectrics for Future Electronic Devices // J. Mater. Chem. 2020. V. 8. P. 10526.
  22. Жирифалько Л. Статистическая физика твердого тела / Под ред. Кресина В.З., Струнина Б.М. М.: Мир, 1975. 382 с.
  23. Zhang B., Tan R., Yang L. et al. Mechanisms and Properties of Ion-transport in Inorganic Solid Electrolytes // Energy Storage Mater. 2018. V. 10. P. 139.
  24. Yang H., Wu N. Ionic Conductivity and Ion Transport Mechanisms of Solid-state Lithium-ion Battery Electrolytes: A Review // Energy Sci. Eng. 2022. V. 10. № 5. P. 1643.

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (304KB)
3.

Download (414KB)
4.

Download (498KB)
5.

Download (58KB)
6.

Download (267KB)
7.

Download (690KB)
8.

Download (426KB)
9.

Download (40KB)

Copyright (c) 2023 А.Е. Галашев