Equation of State of Iron Oxide at a Pressure ≤1 Tpa
- Authors: Nikolaev D.N.1, Lomonosov I.V.1
-
Affiliations:
- Federal Research Center for Problems of Chemical Physics and Medical Chemistry, Russian Academy of Sciences
- Issue: Vol 61, No 2 (2023)
- Pages: 318-320
- Section: Short Communications
- URL: https://gynecology.orscience.ru/0040-3644/article/view/653144
- DOI: https://doi.org/10.31857/S004036442302014X
- ID: 653144
Cite item
Abstract
The thermophysical properties of shock-compressed porous iron oxide at pressures up to 1 TPa were determined for the first time. The results agree well with earlier static and dynamic measurements in the pressure range up to 0.2 TPa. An equation of state for the high-pressure phase of iron oxide was constructed and compared with data at high pressures and temperatures.
About the authors
D. N. Nikolaev
Federal Research Center for Problems of Chemical Physics and Medical Chemistry, Russian Academy of Sciences
Email: nik@ficp.ac.ru
Moscow, Russia
I. V. Lomonosov
Federal Research Center for Problems of Chemical Physics and Medical Chemistry, Russian Academy of Sciences
Author for correspondence.
Email: nik@ficp.ac.ru
Moscow, Russia
References
- Фортов В.Е. Уравнения состояния вещества от идеального газа до кварк-глюонной плазмы. М.: Физматлит, 2012. 492 с.
- Knudson M.D., Desjarlais M.P. Adiabatic Release Measurements in α-quartz between 300 and 1200 GPa: Characterization of α-quartz as a Shock Standard in the Multimegabar Regime // Phys. Rev. B. 2013. V. 88. № 18. P. 184107.
- Desjarlais M.P., Knudson M.D., Cochrane K.R. Extension of the Hugoniot and Analytical Release Model of α-quartz to 0.2–3 TPa // J. Appl. Phys. 2017. V. 122. № 3. P. 035903.
- Трунин Р.Ф. Ударная сжимаемость конденсированных веществ в мощных ударных волнах подземных ядерных взрывов // УФН. 1994. Т. 164. № 11. С. 1215.
- McCoy C.A., Marshall M.C., Polsin D.N., Fratanduono D.E., Celliers P.M., Meyerhofer D.D., Boehly T.R. Hugoniot, Sound Velocity, and Shock Temperature of MgO to 2300 GPa // Phys. Rev. B. 2019. V. 100. № 1. P. 014106.
- Struzhkin V.V., Mao H.-k., Hu J., Schwoerer-Böhning M., Shu J., Hemley R.J., Sturhahn W., Hu M.Y., Alp E.E., Eng P., Shen G. Nuclear Inelastic X-ray Scattering of FeO to 48 GPa // Phys. Rev. Lett. 2001. V. 87. № 25. P. 255501.
- Ozawa H., Hirose K., Tateno Sh., Sata N., Ohishi Ya. Phase Transition Boundary between B1 and B8 Structures of FeO up to 210 GPa // Phys. Earth Planet. Inter. 2010. V. 179. № 3–4. P. 157.
- Fischer R.A., Campbell A.J., Shofner G.A., Lord O.T., Dera P., Prakapenka V.B. Equation of State and Phase Diagram of FeO // Earth Planet. Sci. Lett. 2011. V. 304. № 3–4. P. 496.
- Fischer R.A., Campbell A.J., Lord O.T., Shofner G.A., Dera P., Prakapenka V.B. Phase Transition and Metallization of FeO at High Pressures and Temperatures // Geophys. Res. Lett. 2011. V. 38. № 24. L24301.
- Ozawa H., Takahashi F., Hirose K., Ohishi Ya., Hirao N. Phase Transition of FeO and Stratification in Earth’s Outer Core // Science. 2011. V. 334. № 6057. P. 792.
- Ohta K., Cohen R.E., Hirose K., Haule K., Shimizu K., Ohishi Ya. Experimental and Theoretical Evidence for Pressure-induced Metallization in FeO with Rocksalt-type Structure // Phys. Rev. Lett. 2012. V. 108. № 2. P. 026403.
- Morard G., Antonangeli D., Bouchet J., Rivoldini A., Boccato S., Miozzi F., Boulard E., Bureau H., Mezouar M., Prescher C., Chariton S., Greenberg E. Structural and Electronic Transitions in Liquid FeO under High Pressure // J. Geophys. Res.: Solid Earth. 2022. V. 127. № 11. e2022JB025117.
- Jeanloz R., Ahrens T.J. Equations of State of FeO and CaO // Geophys. J. Int. 1980. V. 62. № 3. P. 505.
- Yagi T., Fukuoka K., Takei H., Syono Y. Shock Compression of Wüstite // Geophys. Res. Lett. 1988. V. 15. № 8. P. 816.
- Nikolaev D.N., Ternovoi V.Ya., Kim V.V., Shutov A.V. Plane Shock Compression Generators, Utilizing Convergence of Conical Shock Waves // J. Phys.: Conf. Ser. 2014. V. 500. № 14. P. 1.
- Nikolaev D.N., Kulish M.I., Dudin S.V., Mintsev V.B., Lomonosov I.V., Fortov V.E. Measurement of Dense Plasma Temperature of the Shock-compressed Silicon // Contrib. Plasma Phys. 2021. V. 61. e202100113.
- Николаев Д.Н., Кулиш М.И., Дудин С.В., Минцев В.Б., Ломоносов И.В., Фортов В.Е. Ударная сжимаемость монокристаллического кремния в диапазоне давлений 280–510 ГПа // ТВТ. 2021. Т. 59. № 6. С. 860.
- Зельдович Я.Б., Райзер Ю.П. Физика ударных волн и высокотемпературных гидродинамических явлений. М.: Наука, 1966. 688 с.
- Lomovosov I.V., Bushman A.V., Fortov V.E., Khischenko K.V. Caloric Equations of State of Structural Materials // AIP Conf. Proc. 1994. V. 309. P. 133.
- Lomonosov I.V. Multi-phase Equation of State for Aluminum // Laser Part. Beams. 2007. V. 25. P. 567.
- Ломоносов И.В., Фортова С.В. Широкодиапазонные полуэмпирические уравнения состояния вещества для численного моделирования высокоэнергетических процессов // ТВТ. 2017. Т. 55. № 4. С. 596.
- McQueen R.G., Marsh S.P., Fritz J.N. Hugoniot Equation of State of Twelve Rocks // J. Geophys. Res. 1967. V. 72. № 20. P. 4999.
Supplementary files
