Thermal Explosion of Single Particles in a Random Medium-Temperature Field

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

A model is proposed for the thermal explosion of a single particle with an exothermic chemical reaction in a turbulent temperature field of the medium. The chemical reaction rate is represented by a modified Arrhenius law, which takes into account changes in the internal structure of the particle material. Temperature fluctuations are modeled by a Gaussian random process. The study was carried out using the Lagrange and Euler approaches. In the Lagrange approach, in which a system of stochastic ordinary differential equations is solved, random temperature fluctuations of the medium and particle ensemble are calculated. Based on the results of numerical simulation of the ensemble, the dynamics of the empirical probability density function of the random particle temperature distribution is simulated. In the Euler approach, a nonstationary closed-loop equation is derived for the probability density function of random particle temperatures, which is numerically integrated using an original conservative difference scheme. The calculation results for both approaches agree satisfactorily with each other. It is shown that a random temperature field of the medium qualitatively changes the dynamics of occurrence of a thermal explosion. In a random temperature field, a thermal explosion can occur provided that in a deterministic case, the system is absolutely stable.

Sobre autores

I. Derevich

Bauman Moscow State Technical University

Email: DerevichIgor@bmstu.ru
Moscow, Russia

A. Klochkov

Bauman Moscow State Technical University

Autor responsável pela correspondência
Email: DerevichIgor@bmstu.ru
Moscow, Russia

Bibliografia

  1. Schneider H., Proust Ch. Determination of Turbulent Burning Velocities of Dust Air Mixtures with the Open Tube Method // J. Loss Prevent. Proc. Ind. 2007. V. 20. № 4–6. P. 470.
  2. Hadi K., Ichimura R., Hashimoto N., Fujita O. Spherical Turbulent Flame Propagation of Pulverized Coal Particle Clouds in an O2 /N2 Atmosphere // Proc. Combust. Inst. 2019. V. 37. № 3. P. 2935.
  3. Scheid M., Geißler A., Krause U. Experiments on the Influence of Pre-ignition Turbulence on Vented Gas and Dust Explosions // J. Loss Prevent. Proc. Ind. 2006. V. 19. № 2–3. P. 194.
  4. Smirnov N.N., Nikitin V.F., Legros J.C. Ignition and Combustion of Turbulized Dust–Air Mixtures // Combust. Flame. 2000. V. 123. № 1–2. P. 46.
  5. Eckhoff R.K. Understanding Dust Explosions. The Role of Powder Science and Technology // J. Loss Prevent. Proc. Ind. 2009. V. 22. № 1. P. 105.
  6. El-Sayed S.A. Self-Ignition of Dust Cloud in a Hot Gas // J. Braz. Soc. Mech. Sci. Eng. 2018. V. 40. № 6. 285.
  7. Esclapez L., Collin-Bastiani F., Riber E., Cuenot B. A Statistical Model to Predict Ignition Probability // Combust. Flame. 2021. V. 225. P. 180.
  8. Eaton J.K., Fessler J.R. Preferential Concentration of Particles by Turbulence // Int. J. Multiphase Flow. 1994. V. 20. Suppl. P. 169.
  9. Вараксин А.Ю. Кластеризация частиц в турбулентных и вихревых двухфазных потоках // ТВТ. 2014. Т. 52. № 5. С. 777.
  10. Франк-Каменецкий Д.А. Диффузия и теплопередача в химической кинетике. М.: Наука, 1987.
  11. Зельдович Я.Б., Баренблатт Г.И., Либрович В.Б., Махвиладзе Г.М. Математическая теория горения и взрыва. М.: Наука, 1980. 478 с.
  12. Gray B.F., Sherrington M.E. Explosive Systems with Reactant Consumption. I. Critical Conditions // Combust. Flame. 1972. V. 19. № 3. P. 435.
  13. Gorelov G.N., Sobolev V.A. Mathematical Modeling of Critical Phenomena in Thermal Explosion Theory // Combust. Flame 1991. V. 87. № 2. P. 203.
  14. Shouman A.R., El-Sayed S. Accounting for Reactant Consumption in the Thermal Explosion Problem. Part I: Mathematical Foundation // Combust. Flame. 1992. V. 88. № 3–4. P. 321.
  15. Filimonov V.Yu. Features of Self-Heating for Homogeneous Exothermic Reactions // Combust. Sci. Technol. 2014. V. 186. № 2. P. 173.
  16. Зарубин В.С., Кувыркин Г.Н., Савельева И.Ю. Вариационная форма модели теплового взрыва в твердом теле с зависящей от температуры теплопроводностью // ТВТ. 2018. Т. 56. № 2. С. 235.
  17. Van Kampen N.G. Stochastic Processes in Physics and Chemistry. North-Holland, Amsterdam: Elsevier, 1984. 465 p.
  18. Gardiner C.W. Handbook of Stochastic Methods for Physics, Chemistry, and the Natural Sciences. Berlin‒Heidelberg: Springer, 1985. 443 p.
  19. Klyatskin V.I. Stochastic Equations Through the Eye of the Physicist. Oxford: Elsevier Science, 2005. 556 p.
  20. Хорстхемке В., Лефевр Р. Индуцированные шумом переходы: теория и применение в физике, химии и биологии. М.: Мир, 1987. 400 с.
  21. Warnatz J., Maas U., Dibble R.W. Combustion. Physical and Chemical Fundamentals, Modeling and Simulation, Experiments, Pollutant Formation. 4th ed. Berlin‒Heidelberg: Springer, 2001. 378 p.
  22. Федотов С.П., Третьяков М.В. Стационарные режимы гетерогенной химической реакции при наличии внешних шумов // Хим. физика. 1988. Т. 7. № 11. С. 1533.
  23. Федотов С.П., Третьяков М.В. О стохастическом воспламенении частицы // Хим. физика. 1991. Т. 10. № 2. С. 238.
  24. Pope S.B. PDF Methods for Turbulent Reactive Flows // Prog. Energy Combust. Sci. 1985. V. 11. № 2. P. 119.
  25. Вараксин А.Ю. К выбору инерционности частиц, используемых для оптической диагностики высокоскоростных газовых потоков // ТВТ. 2021. Т. 59. № 3. С. 411.
  26. Derevich I.V. Influence of Internal Turbulent Structure on Intensity of Velocity and Temperature Fluctuations of Particles // Int. J. Heat Mass Transfer. 2001. V. 44. № 23. P. 4505.
  27. Мержанов А.Г., Руманов Э.Н. Нелинейные аффекты в макроскопической кинетике // УФН. 1987. Т. 151. № 4. С. 553.
  28. Burrage K., Burrage P.M. High Strong Order Explicit Runge–Kutta Methods for Stochastic Ordinary Differential Equations // Appl. Numer. Math. 1996. V. 22. № 1–3. P. 81.
  29. Debrabant K., Rößler A. Classification of Stochastic Runge–Kutta Methods for the Weak Approximation of Stochastic Differential Equations // Math. Comput. Simulation. 2008. V. 77. № 4. P. 408.
  30. Деревич И.В., Клочков А.К. Флуктуации скорости частицы в вязком газе со случайной скоростью в виде суммы двух коррелированных цветных шумов // Матем. и матем. моделирование. 2020. № 1. С. 33.
  31. Wetchagarun S., Riley J.J. Dispersion and Temperature Statistics of Inertial Particles in Isotropic Turbulence // Phys. Fluids. 2010. V. 22. № 6. 063301.
  32. Семёнов Н.Н. О некоторых проблемах химической кинетики и реакционной способности. М.: Изд-во АН, 1954. 350 с.
  33. Князев А.Г., Дюкарев Е.А. О режимах твердофазного разложения одиночных кристаллов инициирующих взрывчатых веществ // Физ. мезомеханика. 2000. Т. 3. № 3. С. 97.
  34. Kolmogoroff A. Über die analytischen Methoden in der Wahrscheinlichkeitsrechnung // Math. Ann. 1931. Bd. 104. S. 415.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2.

Baixar (71KB)
3.

Baixar (255KB)
4.

Baixar (87KB)
5.

Baixar (267KB)

Declaração de direitos autorais © И.В. Деревич, А.К. Клочков, 2023