Morphofunctional characteristics of the blood erythron of the golden grey mullet Chelon auratus (Mugilidae) at the early stages of ontogenesis

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Рұқсат ақылы немесе тек жазылушылар үшін

Аннотация

The hematological characteristics of the circulating blood of the golden grey mullet Chelon auratus (Risso, 1810) in the first 3 years of life were studied. The material was obtained simultaneously in March−April at the mullet fish farm (settlement of Belenkoe, Odessa oblast). It was found that in the first year of the life of the golden mullet, an active production of circulating erythrocyte mass occurs. The level of polychromatophilic normoblasts, reflecting the rate of erythropoietic processes in hematopoietic tissue, reaches maximum values in the peripheral bloodstream of fingerlings. Intracellular hemoglobin synthesis occurs at a lower rate. This is accompanied by the appearance of hypochromic erythrocytes in the blood. The value of the mean cellular hemoglobin content (MCH) is at a minimum level of 28.9 ± 0.8 pg (in third-year fish, 37.1 ± 0.8 pg). The blood of fry and yearlings is dominated by large red blood cells (96.9 ± 4.1 mm3) with high values of the nuclear cytoplasmic ratio (NCR): 0.121 ± 0.011. The NCR index decreases by the second year of life as the MCH increases (R2 = 0.851). In the blood of yearlings, there is a high content of erythrocyte abnormalities (up to 14% of erythroid cells): dacryocytes, cells with invagination of the nucleus, erythrocyte shadows. The presence of dacryocytes in the blood of this age group reflects the development of hypoxia. It follows from the presented results that the first year in the life cycle of the golden grey mullet is the most critical. This should be taken into account when breeding this species in fish farms.

Толық мәтін

Рұқсат жабық

Авторлар туралы

А. Soldatov

Kovalevsky Institute of Biology of the South Seas, Russian Academy of Sciences; Sevastopol State University

Хат алмасуға жауапты Автор.
Email: alekssoldatov@yandex.ru
Ресей, Sevastopol; Sevastopol

A. Rokotova

Kovalevsky Institute of Biology of the South Seas, Russian Academy of Sciences

Email: alekssoldatov@yandex.ru
Ресей, Sevastopol

T. Kukhareva

Kovalevsky Institute of Biology of the South Seas, Russian Academy of Sciences

Email: alekssoldatov@yandex.ru
Ресей, Sevastopol

V. Rychkova

Kovalevsky Institute of Biology of the South Seas, Russian Academy of Sciences

Email: alekssoldatov@yandex.ru
Ресей, Sevastopol

Әдебиет тізімі

  1. Давыдов О.Н., Темниханов Ю.Д., Куровская Л.Я. 2006. Патология крови рыб. Киев: ИНКОС, 206 с.
  2. Павлов Д.А. 2004. Морфологическая изменчивость в раннем онтогенезе костистых рыб и ее эволюционное значение: Автореф. дис. ... докт. биол. наук. М.: МГУ, 52 с.
  3. Солдатов А.А. 1994. Локализация и пролиферативная активность очагов эритропоэза в онтогенезе кефали-сингиля Liza aurata // Журн. эволюц. биохимии и физиологии. Т. 30. № 4. С. 567–574.
  4. Солдатов А.А., Парфенова И.А. 2014. Гемоглобиновая система кефали-сингиля (Liza aurata, Risso) при адаптации к условиям внешней гипоксии // Там же. Т. 50. № 1. С. 72–77.
  5. Солдатов А.А., Рычкова В.Н., Кухарева Т.А., Рокотова А.Г. 2023. Клеточный состав эритроидных форм в крови и головной почке кефали-сингиля (Chelon auratus Risso, 1810) на протяжении годового цикла // Рос. физиол. журн. им. И.М. Сеченова. T. 109. № 7. С. 990–1001. https://doi.org/10.31857/S0869813923070130
  6. Ташкэ К. 1980. Введение в количественную цито-гистологическую морфологию. Бухарест: Изд-во АН СР Румыния, 291 с.
  7. Фащук Д.Я. 2019. Черноморская кефаль: как возродить былую славу? // Природа. № 11 (1251). С. 20–31. https://doi.org/10.7868/S0032874X19110036
  8. Шекк П.В. 2012. Биолого-технологические основы культивирования кефалевых и камбаловых. Херсон: ЧП Гринь, 306 с.
  9. Шекк П.В., Куликова Н.И., Руденко В.И. 1990. Возрастные изменения реакции черноморского сингиля Liza aurata на низкую температуру // Вопр. ихтиологии. Т. 30. Вып. 1. С. 94–106.
  10. Ayllon F., Garcia-Vazquez E. 2000. Induction of micronuclei and other nuclear abnormalities in European minnow Phoxinus phoxinus and mollie Poecilia latipinna: an assessment of the fish micronucleus test // Mutat. Res. Genet. Toxicol. Environ. Mutagen. V. 467. № 2. P. 177–186. https://doi.org/10.1016/s1383-5718(00)00033-4
  11. Bakhshalizadeh S., Liyafoyi A.R., Saoca C. et al. 2022. Nickel and cadmium tissue bioaccumulation and blood parameters in Chelon auratus and Mugil cephalus from Anzali free zone in the south Caspian Sea (Iran) and Faro Lake (Italy): a comparative analysis // J. Trace Elem. Med. Biol. V. 72. Article 126999. https://doi.org/10.1016/j.jtemb.2022.126999
  12. Ergene S., Çavaş T., Çelik A. et al. 2007. Monitoring of nuclear abnormalities in peripheral erythrocytes of three fish species from the Goksu Delta (Turkey): genotoxic damage in relation to water pollution // Ecotoxicology. V. 16. № 4. P. 385–391. https://doi.org/10.1007/s10646-007-0142-4
  13. Fazio F., Saoca C., Acar Ü. et al. 2020. A comparative evaluation of hematological and biochemical parameters between the Italian mullet Mugil cephalus (Linnaeus 1758) and the Turkish mullet Chelon auratus (Risso 1810) // Turk. J. Zool. V. 44. № 1. P. 22–30. https://doi.org/10.3906/zoo-1907-37
  14. Girish V., Vijayalakshmi A. 2004. Affordable image analysis using NIH Image/ImageJ // Indian J. Cancer. V. 41. № 1. Р. 47.
  15. Houchin D.N., Munn J.I., Parnell B.L. 1958. A method for the measurement of red cell dimensions and calculation of mean corpuscular volume and surface area // Blood. V. 13. № 12. P. 1185–1191. https://doi.org/10.1182/blood.V13.12.1185.1185
  16. Houston A.H. 1990. Blood and circulation // Methods for fish biology. Bethesda: Am. Fish. Soc. P. 273–334. https://doi.org/10.47886/9780913235584.ch9
  17. Kulkeaw K., Sugiyama D. 2012. Zebrafish erythropoiesis and the utility of fish as models of anemia // Stem Cell Res. Ther. V. 3. № 6. Article 55. https://doi.org/10.1186/scrt146
  18. Nita V., Nenciu M. 2020. Biological and ethological response of Black Sea golden grey mullet (Chelon auratus Risso, 1810) fries to different salinities and temperatures // Turk. J. Fish. Aquat. Sci. V. 20. № 11. P. 777–783. https://doi.org/10.4194/1303-2712-v20_11_01
  19. Shahriari Moghadam M., Abtahi B., Mosafer Khorjestan S., Bitaab M.A. 2013. Salinity tolerance and gill histopathological alterations in Liza aurata Risso, 1810 (Actinopterygii: Mugilidae) fry // Ital. J. Zool. V. 80. № 4. P. 503–509. https://doi.org/10.1080/11250003.2013.853326
  20. Strunjak-Perovic I., Topic Popovic N., Coz-Rakovac R., Jadan M. 2009. Nuclear abnormalities of marine fish erythrocytes // J. Fish Biol. № 74. № 10. P. 2239– 2249. https://doi.org/10.1111/j.1095-8649.2009.02232.x

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2. Fig. 1. Hematological characteristics (mean values) of circulating blood of the singil Chelon auratus of different age groups: a – hemoglobin concentration in the blood, б – number of erythrocytes in the blood, в – hemoglobin content in erythrocytes (HCE). Here and in Fig. 2, 5, 6: (⏉) – error of the mean value.

Жүктеу (1MB)
3. Fig. 2. Morphometric characteristics (mean values) of circulating erythrocytes in the blood of the red scaly-tailed merganser Chelon auratus of different age groups: a – cell volume (Vc), б – nuclear volume (Vn), в – nuclear-cytoplasmic ratio (NCR).

Жүктеу (1001KB)
4. Fig. 3. Correlation relationships for the “SGE — Vn” system (y = −12.1 × ln(x) + 58.7; R2 = 0.851) in the common mullet Chelon auratus: SGE — average hemoglobin content in erythrocytes, Vn — average volume of cell nucleus, (⌶, ⊢⊣) — errors of mean values.

Жүктеу (415KB)
5. Fig. 4. Types of erythroid forms in the circulating blood of the Chelon auratus singil (←): a – cells with nuclear invaginations, б – dacryocytes, в – erythrocyte shadows, г – polychromatophilic normoblasts.

Жүктеу (1MB)
6. Fig. 5. The proportion of erythrocyte anomalies in the circulating blood of the singil Chelon auratus of different age groups, % of the number of erythroid cells: a – invaginations of cell nuclei, б – dacryocytes, в – erythrocyte shadows.

Жүктеу (1MB)
7. Fig. 6. Content of polychromatophilic normoblasts (PN) in the circulating blood of the singil Chelon auratus of different age groups, % of the number of erythroid cells.

Жүктеу (474KB)

© Russian Academy of Sciences, 2025