MEASUREMENT OF THE RATES OF THE 102Pd(

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Metastasis is one of the main causes of relapse and subsequent high mortality from cancer. Metastases can contain very few cells and spread throughout the body. Despite the existing variety of diagnostic imaging methods, in practice, the resolution of none of them allows one to unambiguously diagnose the presence of a tumor (clump of cancer cells) smaller than 1–2 mm in size. After surgery and tumor removal, patients are typically offered chemotherapy, external beam radiation therapy, or α- or β-emitter radionuclide therapy. This therapy has side effects that lead to additional risks and may interfere with continued treatment. Recently, a number of works, in contrast to the traditional approach, have proposed using “short-range” radionuclides instead of α- or β-emitters [1–3]. It is convenient to use Auger or conversion electron emitters as “short-acting” therapeutic agents. Auger electrons and conversion electrons have a short range and high specific linear energy loss in biological tissue; they are capable of damaging cells within a few tens of microns, but do not have a radiotoxic effect over l ng distances, without damaging healthy cells and tissues. The most efficient and convenient Auger and conversion electron emitters for practical use include 103mRh (

Sobre autores

V. Zagryadsky

National Research Center “Kurchatov Institute”

Moscow, Russia

K. Korolev

National Research Center “Kurchatov Institute”

Email: kirik.korolev@yandex.ru
Moscow, Russia

Y. Kravets

National Research Center “Kurchatov Institute”

Moscow, Russia

T. Kuznetsova

National Research Center “Kurchatov Institute”

Moscow, Russia

A. Kurochkin

National Research Center “Kurchatov Institute”

Moscow, Russia

K. Makoveeva

National Research Center “Kurchatov Institute”

Moscow, Russia

I. Skobelin

National Research Center “Kurchatov Institute”

Moscow, Russia

A. Strepetov

National Research Center “Kurchatov Institute”

Moscow, Russia

T. Udalova

National Research Center “Kurchatov Institute”

Moscow, Russia

Bibliografia

  1. P. Bernhardt, E. Forssell-Aronsson, L. Jacobsson, and G. Skarnemark, Acta Oncol. 40, 602 (2001).
  2. D. Filosofov, E. Kurakina, and V. Radchenko, Nucl. Med. Biol. 94–95, 1 (2021).
  3. G. Skarnemark, A. Odegaard-Jensen, J. Nilsson, ¨ B. Bartos, E. Kowalska, A. Bilewicz, and P. Bernhardt, J. Radioanal. Nucl. Chem. 280, 371 (2009).
  4. С. С. Арзуманов, B. C. Буслаев, Б. Г. Ерозолимский, С. В. Масалович, А. Н. Стрепетов, В. П. Федунин, А. И. Франк, А. Ф. Яшин, Б. А. Яценко, Препринт ИАЭ-4216/14 (1985).
  5. D. De Frenne, Nucl. Data Sheets 110, 2081 (2009).
  6. A. J. Koning, D. Rochman, J. Sublet, N. Dzysiuk, M. Fleming, and S. van der Marck, Nucl. Data Sheets 155, 1 (2019).

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Russian Academy of Sciences, 2024