INVESTIGATION OF HIGH-ENERGY NEUTRINOS AT THE LARGE HADRON COLLIDER

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The first neutrinos from the proton-proton collisions at an energy of 13.6 TeV were registered in the pseudorapidity range of 7.2 > η > 8.4 in the SND@LHC experiment at CERN. SND@LHC is an autonomous experiment based on a compact hybrid detector for detecting high-energy neutrinos at the Large Hadron Collider. The detector allows to distinguish the interactions of the neutrinos of all three flavors and to investigate the process of the charmed particles’ generation in the pseudorapidity region inaccessible to other experiments at the LHC. The aim of the experiment is also to study the scattering of weakly interacting particles on the electrons and protons of the target.

Sobre autores

N. Konovalova

Lebedev Physical Institute of the Russian Academy of Sciences

Moscow, Russia

N. Okateva

Lebedev Physical Institute of the Russian Academy of Sciences

Moscow, Russia

N. Polukhina

Lebedev Physical Institute of the Russian Academy of Sciences

Moscow, Russia

Zh. Sadykov

Lebedev Physical Institute of the Russian Academy of Sciences

Moscow, Russia

N. Starkov

Lebedev Physical Institute of the Russian Academy of Sciences

Moscow, Russia

E. Starkova

Lebedev Physical Institute of the Russian Academy of Sciences

Moscow, Russia

M. Chernyavsky

Lebedev Physical Institute of the Russian Academy of Sciences

Moscow, Russia

T. Shchedrina

Lebedev Physical Institute of the Russian Academy of Sciences

Email: tvshchedrina@gmail.com
Moscow, Russia

Bibliografia

  1. C. Ahdida, R. Albanese, A. Alexandrov, M. Andreini, A. Anokhina, A. Bay, P. Bestmann, C. Betancourt, I. Bezshyiko, A. Blanco, M. Bogomilov, K. Bondarenko, W. M. Bonivento, P. Boisseaux-Bourgeois, A. Boyarsky, L. Buonocore, et al., Tech. Rep. No. CERN-LHCC-2021-003, No. LHCC-P-016, CERN, Geneva (2021).
  2. M. Bustamante and A. Connolly, Phys. Rev. Lett. 122, 041101 (2019).
  3. M. Aaboud, G. Aad, B. Abbott, J. Abdallah, O. Abdinov, B. Abeloos, R. Aben, O. S. AbouZeid, N. L. Abraham, H. Abramowicz, H. Abreu, R. Abreu, Y. Abulaiti, B. S. Acharya, L. Adamczyk, D. L. Adams, et al. (ATLAS Collab.), Eur. Phys. J. C 76, 653 (2016).
  4. H. Abreu, C. Antel, A. Ariga, T. Ariga, J. Boyd, F. Cadoux, D. W. Casper, X. Chen, A. Coccaro, C. Dozen, P. B. Denton, Y. Favre, J. L. Feng, D. Ferrere, I. Galon, S. Gibson, et al., Eur. Phys. J. C 80, 61 (2020).
  5. LHCb Collab., LHCb Tracker Upgrade Technical Design Report, Tech. Rep. No. CERN-LHCC-2014-001, No. LHCB-TDR-015, CERN, Geneva (2014).
  6. A. Ariga, T. Ariga, G. De Lellis, A. Ereditato, and K. Niwa, in: Particle Physics Reference Library, Vol. 2, Detectors for Particles and Radiation, Ed. by C. W. Fabjan and H. Schopper (Elsevier, New York, 2020), p. 383–438.
  7. W. Bai, M. Diwan, M. V. Garzelli, Y. S. Jeong, and M. H. Reno, J. High Energy Phys. 2006, 032 (2020).
  8. N. Beni, M. Brucoli, S. Buontempo, V. Cafaro, G. M. Dallavalle, S. Danzeca, G. De Lellis, A. Di Crescenzo, V. Giordano, C. Guandalini, D. Lazic, S. Lo Meo, F. L. Navarria, and Z. Szillasi, J. Phys. G: Nucl. Part. Phys. 46, 115008 (2019).
  9. N. Beni, M. Brucoli, V. Cafaro, T. Camporesi, F. Cerutti, G. M. Dallavalle, S. Danzeca, A. De Roeck, A. De Rujula, D. Fasanella, V. Giordano, C. Guandalini, A. Ioannisyan, D. Lazic, A. Margotti, S. Lo Meo, et al., J. Phys. G: Nucl. Part. Phys. 47, 125004 (2020).
  10. L. A. Anchordoqui, A. Ariga, T. Ariga, W. Bai, K. Balazs, B. Batell, J. Boyd, J. Bramante, M. Campanelli, A. Carmona, F. G. Celiberto, G. Chachamis, M. Citron, G. De Lellis, A. De Roeck, H. Dembinski, et al., Phys. Rept. 968, 1 (2022).
  11. A. Di Crescenzo and G. Galati, Symmetry 15, 1256 (2023).
  12. A. Boyarsky, O. Mikulenko, M. Ovchynnikov, and L. Shchutska, J. High Energy Phys. 2022, 6 (2022).
  13. A. Boveia and C. Doglioni, Rev. Nucl. Part. Sci. 68, 1 (2018).
  14. A. Alexandrov, A. Buonaura, L. Consiglio, N. D’Ambrosio, G. De Lellis, A. Di Crescenzo, G. Galati, V. Gentile, A. Lauria, M. C. Montesi, V. Tioukov, M. Vladymyrov, and E. Voevodina, Sci. Rep. 7(1), 7310 (2017).
  15. A. Alexandrov, G. De Lellis, and V. Tioukov, Sci. Rep. 9(1), 2870 (2019).
  16. N. Agafonova et al. (OPERA Collab.), Phys. Rev. Lett. 120, 211801 (2018).
  17. A. Alexandrov, N. Konovalova, N. Okateva, N. Polukhina, N. Starkov, and T. Shchedrina, Measurement 187, 110244 (2022).
  18. N. Polukhina, N. Konovalova, and T. Shchedrina, Physics 2023, 499 (2023).
  19. R. Albanese et al. (SND@LHC Collab.), Phys. Rev. Lett. 131, 031802 (2023).
  20. H. Abreu et al. (FASER Collab.), Phys. Rev. Lett. 131, 031801 (2023).
  21. SND@LHC Collab., AdvSND@LHC The Advanced Scattering and Neutrino Detector at High Lumi LHC, Letter of Intent, March 3 (2024).
  22. CMS Collab., JINST 5, T03015 (2010).
  23. S. Roesler et al., in: Advanced Monte Carlo for Radiation Physics, Particle Transport Simulation and Applications, Ed. by A. Kling et al. (Springer, Berlin, Heidelberg, 2001).
  24. A. Ferrari et al., FLUKA: A multi-particle transport code (Program version 2005), Tech. Rep. No. CERN-2005-010, SLAC-R-773, INFN-TC-05-11, CERN, INFN (2005).
  25. T. T. Bohlen, F. Cerutti, M. P. W. Chin, A. Fasso` , A. Ferrari, P. G. Ortega, A. Mairani, P. R. Sala, G. Smirnov, and V. Vlachoudis, Nucl. Data Sheets 120, 211 (2014).

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Russian Academy of Sciences, 2024