Study of cosmic rays with energies above 5 EeV using radio method

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

At the Yakutsk array in 1986 regular measurements of radio emission produced by relativistic air shower particles were started. After monitoring of background noise in the array area frequency of 30–35 MHz was chosen, since noise level is minimal in this frequency range. During this time, air showers with highest energies of 100 EeV were registered. By using hybrid measurements of charged particles, Cherenkov light and radio emission it was shown that signal amplitude proportional to air shower energy and shape of lateral distribution at sea level correlates with the depth of maximum development. Using the obtained characteristics, atomic weight of primary particles that generated air shower was estimated within QGSjetII-04 framework simulation.

Texto integral

Acesso é fechado

Sobre autores

I. Petrov

Yu.G. Shafer Institute of Cosmophysical Research and Aeronomy of Siberian Branch of the Russian Academy of Sciences

Autor responsável pela correspondência
Email: igor.petrov@ikfia.ysn.ru
Rússia, Yakutsk

S. Knurenko

Yu.G. Shafer Institute of Cosmophysical Research and Aeronomy of Siberian Branch of the Russian Academy of Sciences

Email: igor.petrov@ikfia.ysn.ru
Rússia, Yakutsk

Bibliografia

  1. А. Д. Филоненко, УФН 185, 673 (2015) [Phys. Usp. 58, 633 (2015)].
  2. В. А. Царев, ЭЧАЯ 35, 1 (2004).
  3. J. Linsley, Phys. Rev. Lett. 10, 146 (1963).
  4. J. V. Jelley, J. H. Fruin, N. A. Porter, T. C. Weekes, F. G. Smith, and R. A. Porter, Nature 205, 327 (1965).
  5. F. D. Kahn and I. Lerche, Proc. Roy. Soc. London Ser. A 289, 206 (1966).
  6. O. Scholten, K. Werner, and F. Rusydi, Astropart. Phys. 29, 94 (2008).
  7. G. A. Askaryan, Sov. Phys. JETP 14, 441 (1962).
  8. F. G. Schröder, Prog. Part. Nucl. Phys. 93, 1 (2017).
  9. V. P. Artamonov, T. A. Egorov, N. N. Efimov, T. V. Rekhlyasova, N. I. Sleptsov, S. A. Shudrya, and V. B. Atrashkevich, in Proceedings of the 21st ICRC, Adelaide, Australia (1990), Vol. 9, p. 210.
  10. L. G. Dedenko, A. V. Glushkov, S. P. Knurenko, I. T. Makarov, M. I. Pravdin, D. A. Podgrudkov, I. E. Sleptsov, T. M. Roganova, and G. F. Fedorova, JETP Lett. 90, 787 (2009).
  11. S. Knurenko, V. Kozlov, Z. Petrov, M. Pravdin, and A. Sabourov, in Proceedings of the 22nd ECRS, Turku, Finland (2010), p. 262.
  12. S. P. Knurenko, Z. E. Petrov, and I. S. Petrov, Nucl. Instum. Methods A 866, 230 (2017).
  13. Р. Р. Каримов, С. П. Кнуренко, В. И. Козлов, И. Т. Макаров, З. Е. Петров, М. И. Правдин, А. А. Торопов, Материалы XVI международного симпозиума (Томск, Россия, 2009), с. 602.
  14. S. P. Knurenko, D. S. Borschevsky, Z. E. Petrov, and I. S. Petrov, Proc. SPIE 8696, 86960Q (2012).
  15. С. П. Кнуренко, И. С. Петров, Письма в ЖЭТФ 104, 305 (2016).
  16. S. P. Knurenko, V. I. Kozlov, Z. E. Petrov, and M. I. Pravdin, Bull. Russ. Acad. Sci.: Phys. 77, 1559 (2013).
  17. A. Tikhonov and V. Arsenin, Solution of Ill-Posed Problems (Winston, New York, 1977), p. 258.
  18. M. N. Dyakonov, S. P. Knurenko, V. A. Kolosov, D. D. Krasilnikov, F. F. Lischenyuk, I. E. Sleptsov, and S. I. Nikolsky, Nucl. Instum. Methods A 248, 224 (1986).
  19. S. P. Knurenko, V. A. Kolosov, and Z. E. Petrov, in Proceedings of the 27th ICRC, Hamburg, Germany (2001), Vol. 1, p. 157.
  20. В. А. Кочнев, в Тр.: Применение ЭВМ в задачах управления (Красноярск, 1985. С. 62–71).
  21. М. Н. Дьяконов, С. П. Кнуренко, В. А. Колосов, И. Е. Слепцов, Оптика атмосферы и океана 12, 329 (1999).
  22. С. П. Кнуренко, И. С. Петров, Изв. РАН. Сер. физ. 79, 446 (2015).
  23. S. Ostapchenko, Phys. Rev. D 83, 014018 (2011).
  24. E. G. Berezhko, S. P. Knurenko, and L. T. Ksenofontov, Astropart. Phys. 36, 31 (2012).
  25. J. Hörandel, J. Phys.: Conf. Ser. 47, 41 (2006).
  26. S. Knurenko and I. Petrov, EPJ Web Conf. 208, 08017 (2019).
  27. R. U. Abbasi, M. Abe, T. Abu-Zayyad, M. Allen, R. Azuma, E. Barcikowski, J. W. Belz, D. R. Bergman, S. A. Blake, R. Cady, B. G. Cheon, J. Chiba, M. Chikawa, A. di Matteo, T. Fujii, K. Fujita, et al., Phys. Rev. D 99, 02002 (2019).
  28. J. Bellido, A. Aab, P. Abreu, M. Aglietta, I. Al Samarai, I. F. M. Albuquerque, I. Allekotte, A. Almela, J. Alvarez Castillo, J. Alvarez-Muñiz, G. A. Anastasi, L. Anchordoqui, B. Andrada, S. Andringa, C. Aramo, F. Arqueros, et al., Proc. Sci. 301, 506 (2018).
  29. S. P. Knurenko, L. T. Ksenofontov, and I. S. Petrov, Adv. Space Res. 70, 2767 (2022).
  30. J. N. Matthews, R. U. Abbasi, M. Abe, T. Abu-Zayyad, M. Allen, R. Azuma, E. Barcikowski, J. W. Belz, D. R. Bergman, S. A. Blake, R. Cady, B. G. Cheon, J. Chiba, M. Chikawa, A. di Matteo, T. Fujii, et al., Proc. Sci. 301, 1096 (2018).

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Antenna for recording radio emissions at the Yakutsk installation.

Baixar (211KB)
3. Fig. 2. Distribution function of radio emission at a frequency of 30–35 MHz in showers with energies of (1–4) × 1017 eV, (4–8) × 1017 eV, and (8–12) × 1017 eV.

Baixar (96KB)
4. Fig. 3. Distribution functions of showers with energy E ≥ 1019 eV. The points are normalized to the average energy = 1.5 × 1019 eV and reduced to the average zenith angle <θ> = 43°. The data are presented on a logarithmic scale.

Baixar (64KB)
5. Fig. 4. Dependence of the radio signal amplitude Amax on the energy determined from the Cherenkov light flux of the EAS at a distance of 400 m from the shower axis.

Baixar (58KB)
6. Fig. 5. Correlation of Xmax with the ratio of radio signal amplitudes measured at different distances from the EAS axis: a — at a distance of 80 and 200 m; b — at a distance of 175 and 725 m.

Baixar (124KB)
7. Fig. 6. a — dependence of Xmax on energy; b — dependence of mass composition on energy.

Baixar (249KB)
8. Fig. 7. Distribution of arrival of EAS events on the celestial sphere.

Baixar (292KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2024