Antineutrino spectra of 235,238U and 239,241Pu taken from the Double Chooz experiment

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅或者付费存取

详细

235U, 238U, 239Pu and 241Pu antineutrino spectra were obtained from the measurement done by the near detector in Double Chooz experiment. Method of converting the experimental positron spectrum into the antineutrino one has been developed. The spectrum conversion function obtained from Monte Carlo calculations is used. The experimental antineutrino spectrum taken by this method corresponds to a certain fuel composition of a nuclear reactor core in parts of fission. It is possible to split the experimental antineutrino spectrum on nuclear fuel components spectra. Nuclear fuel individual isotope antineutrino spectra from uranium and plutonium were fitted by the calculated ones obtained by summation of individual fragment spectra. In the calculation, a strength function was used to describe the probability distribution of beta transitions for unknown fragments. The most accurate experimental cross sections of inverse beta decay reaction measured in a number of experiments are consistent with sections calculated on base of our experimental and calculated 235U, 238U, 239Pu and 241Pu antineutrino spectra.

全文:

受限制的访问

作者简介

A. Vlasenko

Institute for Nuclear Research of the Russian Academy of Sciences; National Research Nuclear University MEPhI

编辑信件的主要联系方式.
Email: ssilaeva@inr.ru
俄罗斯联邦, Moscow; Moscow

S. Ingerman

Institute for Nuclear Research of the Russian Academy of Sciences

Email: ssilaeva@inr.ru
俄罗斯联邦, Moscow

P. Naumov

Institute for Nuclear Research of the Russian Academy of Sciences

Email: ssilaeva@inr.ru
俄罗斯联邦, Moscow

V. Sinev

Institute for Nuclear Research of the Russian Academy of Sciences; National Research Nuclear University MEPhI

Email: ssilaeva@inr.ru
俄罗斯联邦, Moscow; Moscow

参考

  1. C. L. Cowan Jr., F. Reines, F. B. Harrison, H. W. Kruse, and A. D. McGuire, Science 124, 103 (1956); В. И. Копейкин, Л. А. Микаэлян, В. В. Синев, ЯФ 60, 230 (1997) [V. I. Kopeikin, L. A. Mikaelyan, and V. V. Sinev, Phys. At. Nucl. 60, 172 (1997)].
  2. В. В. Синев, ЯФ 76, 578 (2013) [V. V. Sinev, Phys. At. Nucl. 76, 537 (2013)]; А. П. Власенко, П. Ю. Наумов, С. В. Силаева, В. В. Синев, ЯФ 86, 24 (2023) [P. Naumov, S. Silaeva, V. Sinev, and A. Vlasenko, Phys. At. Nucl. 85, 690 (2022)]; arXiv: 2210.00836 [nucl-ex].
  3. H. de Kerret et al. (Double Chooz Collab.), JHEP 1811, 053 (2018).
  4. H. de Kerret, T. Abrahao, H. Almazan, et al. (Double Chooz Collaboration), Nature Physics 16, 558 (2020).
  5. P. Vogel, R. E. Schenter, F. M. Mann, and G. K. Schenter, Phys. Rev. C 24, 1543 (1981).
  6. P. M. Rubtsov, P. A. Ruzhansky, V. G. Alexankin, et al, Sov. J. Nucl. Phys. 46, 1028 (1987); V. G. Alexankin, S. V. Rodichev, P. M. Rubtsov, and P. A. Ruzhansky, in Proceedings of the International School LEWI-1990.
  7. T. A. Mueller, D. Lhuillier, M. Fallot, A. Letourneau, S. Cormon, M. Fechner, L. Giot, Th. Lasserre, J. Martino, G. Mention, A. Porta, and F. Yermia, Phys. Rev. C 83, 054615 (2011).
  8. K. Schreckenbach, G. Colvin, W. Gelletly, and F. von Feilitzsch, Phys. Lett. B 160, 325 (1985); A. Hahn, K. Schreckenbach, W. Gelletly, F. von Feilitzsch, G. Colvin, and B. Krusche, Phys. Lett. B 218, 365 (1989).
  9. Д. В. Попов, М. Д. Скорохватов, Письма в ЭЧАЯ 20, 5 (2023); V. Kopeikin, M. Skorokhvatov, and O. Titov, Phys. Rev. D 104, 071301 (2021); arXiv: 2103.01684 [nucl-ex].
  10. Y. Declais, H. de Kerret, B. Lefievre, M. Obolensky, A. Etenko, Yu. Kozlov, I. Machulin, V. Martemianov, L. Mikaelyan, M. Skorokhvatov, S. Sukhotin, and V. Vyrodov, Phys. Lett. B 338, 383 (1994).
  11. F. P. An et al. (Daya Bay Collab.), Chin. Phys. C 41, 013002 (2017).

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Spectrum of positron-like events measured in the Double Chooz experiment (black dots with error). Also shown are background images: 1 - random coincidences; 2 - beta spectrum of 9Li and 8He resulting from the passage of a muon through a scintillator; 3 - fast neutrons and stopped muons. The solid curve is an M-K simulation of the sum of the neutrino effect from the two reactors and the backgrounds.

下载 (65KB)
3. Fig. 2. Positron spectrum from the Double Chooz experiment — black dots with errors. Positron spectrum calculated by the M-K method for the Double Chooz detector using the antineutrino spectrum from [5] — solid curve. Values are given per 1 bin at 0.25 MeV.

下载 (85KB)
4. Fig. 3. The simulated positron spectrum by the M-K method and the ideal spectrum obtained by multiplying the antineutrino spectrum and the OBR reaction cross section (a). The function for converting the experimental positron spectrum into the ideal one (b), obtained by dividing the spectra from panel a.

下载 (133KB)
5. Fig. 4. Antineutrino spectrum from the Double Chooz experiment, obtained for the average fuel composition (see expressions (3)). The spectrum is reconstructed using the resampling function from Fig. 3.

下载 (71KB)
6. Fig. 5. Ratio of the 235U spectrum to the sum of all spectra with weights corresponding to the composition of the active zone during the Double Chooz measurement: 1 — Meuller [9]; 2 — ILL [10]; 3 — Popov [11]; 4 — Vogel [7]; 5 — MEPhI [8].

下载 (90KB)
7. Fig. 6. Experimental antineutrino spectra of the fissionable isotopes 235,238U and 239,241Pu, obtained by dividing the experimental Double Chooz spectrum: 1 – 238U; 2 – 235U; 3 – 241Pu; 4 – 239Pu. Black dots with an error are the Double Chooz spectrum.

下载 (82KB)
8. Fig. 7. Comparison of experimental and calculated antineutrino spectra of the fissionable isotopes 235,238U and 239,241Pu obtained as a result of fitting. Black dots with an error are the experimental spectrum, the solid curve is the calculated fitted spectrum. In the tabs: a — 235U; b — 238U; c — 239Pu; d — 241Pu.

下载 (258KB)
9. Fig. 8. Full calculated antineutrino spectra of the fissionable isotopes 235,238U and 239,241Pu, obtained as a result of fitting the experimental Double Chooz spectra.

下载 (86KB)

版权所有 © Russian Academy of Sciences, 2024