Peculiarities of the immune status in children with nervous system pathology combined with excessive contamination of biological media with aluminum

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Introduction. Diseases of the nervous system (NS) occupy a leading place in the structure of child prevalence. The environmental conditions create a growing number of stress-inducing factors able of affecting the child body. Aluminum and its compounds are a good example here, it, in turn, is the most common element on Earth. The increase in the volume of pollution of environmental objects with these chemical pollutants, aspects of its toxic properties in relation to the immune and nervous systems, are attracting more and more attention. However, despite the problem being obvious and urgent to be solved, the pathway of adverse effects produced by aluminum on the immune and nervous system still remains unclear.Materials and methods. We examined sixty six 4–7 years children living in an area affected by emissions from aluminum production. The observation group consisted of children (n = 39) suffering from a nervous disease. The comparison group consisted of a child population (n = 27) without pathology of the nervous system. Immunological exploration was conducted by using flow cytometry, radioallergosorbent tests, and ELISA tests.Results. We comparatively analyzed cell differentiation clusters in the groups of the examined children; as a result, we identified authentically excessive expression of receptors, which were pathogenetically linked to nervous system pathology, in the test group (butyrophilin, toll-like receptor): BTN3/CD277rel., CD284, HLA-DRrel./abs. We also identified elevated aluminum concentration in biological media, elevated IgG specific to aluminum and HCE in blood serum (p < 0.05). These findings allow recommending these indicators as priority ones for children with diagnosed ‘disorder of autonomic nervous system, unspecified, G.90.9’ associated with elevated aluminum contamination in biological media.Research limitations. Children without any nervous system pathology did not participated in the study.Conclusion. We established children with disorder of autonomic nervous system (G.90.9) and elevated aluminum contamination in biological media to have elevated expression of cell differentiation clusters (CD277, CD284) and the late activation marker (HLA-DR) in their blood. This was combined with non-specific (elevated levels of neuron-specific enolase marker) and specific (IgG specific to aluminum) signs of autoimmune aggression, which was not identified in children without elevated contamination of their biological media with aluminum.Compliance with ethical standards. The study was accomplished in conformity with the WMA Declaration of Helsinki Ethical Principles for Medical Research Involving Human Subjects (1964, 2013). The study was approved by the Local Ethics Committee of the Federal Scientific Center for Medical and Preventive Health Risk Management Technologies. All the participants provided their voluntary consent to participation in the study.Contribution of the authors: Zaitseva N.V., Dolgikh О.V. Lanin D.V. — study concept an design, editing; Alikina I.N. — study concept an design, data collection and analysis, writing and editing the text; Starkova К.G. — data collection and analysis; Kirichenko L.V. — editing. All authors are responsible for the integrity of all parts of the manuscript and approval of the manuscript final version.Acknowledgment. The study had no sponsorship.Conflict of interest. The authors declare no conflict of interest.Received: September 15, 2023 / Revised: December 9, 2024 / Accepted: December 11, 2024 / Published: April 30, 2025

Sobre autores

Nina Zaitseva

Federal Scientific Center for Medical and Preventive Health Risk Management Technologies

Email: znv@fcrisk.ru

Oleg Dolgikh

Federal Scientific Center for Medical and Preventive Health Risk Management Technologies

Email: oleg@fcrisk.ru

Dmitriy Lanin

Federal Scientific Center for Medical and Preventive Health Risk Management Technologies; Perm State National Research University, Perm, 614045, Russian Federation

Email: dlan@mail.ru

Inga Alikina

Federal Scientific Center for Medical and Preventive Health Risk Management Technologies

Email: alikina.in@mail.ru

Kseniya Starkova

Federal Scientific Center for Medical and Preventive Health Risk Management Technologies

Email: skg@fcrisk.ru

Larisa Kirichenko

Perm State Medical University named after Academician E.A. Wagner

Email: lkv-7@yandex.ru

Bibliografia

  1. Manisalidis I., Stavropoulou E., Stavropoulos A., Bezirtzoglou E. Environmental and health impacts of air pollution: a review. Front. Public Health. 2020; 8: 14. https://doi.org/10.3389/fpubh.2020.00014
  2. Савилов Е.Д., Анганова Е.В., Ильина С.В., Степаненко Л.А. Техногенное загрязнение окружающей среды и здоровье населения: анализ ситуации и прогноз. Гигиена и санитария. 2016; 95(6): 507–12. https://doi.org/10.18821/0016-9900-2016-95-6-507-512 https://elibrary.ru/whpwfn
  3. Флюрик С.В., Дремза И.К. Механизмы митохондриальной дисфункции нейронов при воздействии мышьяка и алюминия (обзор). Вестник Витебского государственного медицинского университета. 2022; 21(2): 7–14. https://doi.org/10.22263/2312-4156.2022.2.7 https://elibrary.ru/yzeias
  4. MacGillivray D.M., Kollmann T.R. The role of environmental factors in modulating immune responses in early life. Front. Immunol. 2014; 5: 434. https://doi.org/10.3389/fimmu.2014.00434
  5. Medscape. Aluminum Toxicity. Available at: https://emedicine.medscape.com/article/165315-overview#a7
  6. Yang X., Xu F., Zhuang C., Bai C., Huang W., Song M., et al. Effects of corticosterone on immune functions of cultured rat splenic lymphocytes exposed to aluminum trichloride. Biol. Trace Elem. Res. 2016; 173(2): 399–404. https://doi.org/10.1007/s12011-016-0678-3
  7. Boverhof D.R., Ladics G., Luebke B., Botham J., Corsini E., Evans E., et al. Approaches and considerations for the assessment of immunotoxicity for environmental chemicals: a workshop summary. Regul. Toxicol. Pharmacol. 2014; 68(1): 96–107. https://doi.org/10.1016/j.yrtph.2013.11.012
  8. Zhu Y., Li X., Chen C., Wang F., Li J., Hu C., et al. Effects of aluminum trichloride on the trace elements and cytokines in the spleen of rats. Food Chem. Toxicol. 2012; 50(8): 2911–5. https://doi.org/10.1016/j.fct.2012.05.041
  9. Igbokwe I.O., Igwenagu E., Igbokwe N.A. Aluminium toxicosis: a review of toxic actions and effects. Interdiscip. Toxicol. 2019; 12(2): 45–70. https://doi.org/10.2478/intox-2019-0007
  10. She Y., Wang N., Chen C., Zhu Y., Xia S., Hu C., et al. Effects of aluminum on immune functions of cultured splenic T and B lymphocytes in rats. Biol. Trace Elem. Res. 2012; 147(1–3): 246–50. https://doi.org/10.1007/s12011-011-9307-3
  11. Quora. What are the effects of aluminium on the human body? Available at: https://www.quora.com/What-are-the-effects-of-aluminium-on-the-human-body
  12. Cheng D., Zhang X., Tang J., Kong Y., Wang X., Wang S. Chlorogenic acid protects against aluminum toxicity via MAPK/Akt signaling pathway in murine RAW264.7 macrophages. J. Inorg. Biochem. 2019; 190: 113–20. https://doi.org/10.1016/j.jinorgbio.2018.11.001
  13. Feng L., Xiao H., He X., Li Z., Li F., Liu N., et al. Neurotoxicological consequence of long-term exposure to lanthanum. Toxicol. Lett. 2006; 165(2): 112–20. https://dx.doi.org/10.1016/j.toxlet.2006.02.003
  14. Harris N.L., Ronchese F. The role of B7 costimulation in T-cell immunity. Immunol. Cell Biol. 1999; 77(4): 304–11. https://doi.org/10.1046/j.1440-1711.1999.00835.x
  15. Harly C., Guillaume Y., Nedellec S., Peigné C.M., Mönkkönen H., Mönkkönen J., et al. Key implication of CD277/butyrophilin-3 (BTN3A) in cellular stress sensing by a major human γδ T-cell subset. Blood. 2012; 120(11): 2269–79. https://doi.org/10.1182/blood-2012-05-43047
  16. Шугалей И.В., Гарабаджиу А.В., Илюшин М.А., Судариков А.М. Некоторые аспекты влияния алюминия и его соединений на живые организмы. Экологическая химия. 2012; 21(3): 168–72. https://elibrary.ru/stgsyt
  17. Erdő-Bonyár S., Rapp J., Minier T., Ráth G., Najbauer J., Czirják L., et al. Toll-like receptor mediated activation of natural autoantibody producing B cell subpopulations in an autoimmune disease model. Int. J. Mol. Sci. 2019; 20(24): 6152. https://doi.org/10.3390/ijms20246152
  18. Сетко А.Г., Терехова Е.А., Тюрин А.В., Мокеева М.М. Особенности нервно-психического статуса и качества жизни детей и подростков как результат воздействия факторов риска образовательной среды. Анализ риска здоровью. 2018; (2): 62–9. https://doi.org/10.21668/health.risk/2018.2.07 https://elibrary.ru/xrnwix
  19. Долгих О.В., Старкова К.Г., Кривцов А.В., Челакова Ю.А., Чигвинцев В.М., Аликина И.Н. и др. Моделирование комбинированной химической нагрузки (алюминий) и регуляторных иммунных и эндокринных факторов при исследовании продукции цитокинов в эксперименте in vitro. Гигиена и санитария. 2019; 98(2): 214–8. https://doi.org/10.18821/0016-9900-2019-98-2-214-218 https://elibrary.ru/stdhcx
  20. Старкова К.Г., Долгих О.В., Отавина Е.А., Безрученко Н.В., Гусельников М.А., Мазунина А.А. Маркеры гиперчувствительности у детского населения в условиях воздействия алюминия. Медицинская иммунология. 2019; 21(1): 165–70. https://doi.org/10.15789/1563-0625-2019-1-165-170 https://elibrary.ru/vusyfr
  21. Dey M., Singh R.K. Chronic oral exposure of aluminum chloride in rat modulates molecular and functional neurotoxic markers relevant to Alzheimer’s disease. Toxicol. Mech. Methods. 2022; 32(8): 616–27. https://doi.org/10.1080/15376516.2022.2058898
  22. Lukiw W.J., Kruck T.P.A., Percy M.E., Pogue A.I., Alexandrov P.N., Walsh W.J., et al. Aluminum in neurological disease – a 36 year multicenter study. J. Alzheimer’s Dis. Parkinsonism. 2019; 8(6): 457. https://doi.org/10.4172/2161-0460.1000457
  23. Isgrò M.A., Bottoni P., Scatena R. Neuron-specific enolase as a biomarker: biochemical and clinical aspects. Adv. Exp. Med. Biol. 2015; 867: 125–43. https://doi.org/10.1007/978-94-017-7215-0_9
  24. Dantzer R., Wollman E.E. Relationships between the brain and the immune system. J. Soc. Biol. 2003; 197(2): 81–8. (in French)
  25. Bittencourt L.O., Damasceno-Silva R.D., Bragança W.A., Eiró-Quirino L., Oliveira A.C.A., Fernandes R.M., et al. Global proteomic profile of aluminum-induced hippocampal impairments in rats: are low doses of aluminum really safe? Int. J. Mol. Sci. 2022; 23(20): 12523. https://doi.org/10.3390/ijms232012523
  26. Deloncle R., Guillard О., Clanet F., Courtois P., Piriou A. Aluminum transfer as glutamate complex through blood-brain barrier. Possible implication in dialysis encephalopathy. Biol. Trace Elem. Res. 1990; 25(21): 39–45. https://doi.org/10.1007/bf02990262
  27. Levesque L., Mizzen C.A., McLachlan D.R., Fraser P.E. Ligand specific effects on aluminum incorporation and toxicity in neurons and astrocytes. Brain Res. 2000; 877(2): 191–202. https://doi.org/10.1016/s0006-8993(00)02637-8
  28. Астахин А.В., Евлашева О.О., Левитан Б.Н. Клиническое и диагностическое значение основного белка миелина и нейронспецифической енолазы в медицинской практике. Астраханский медицинский журнал. 2016; 11(4): 9–17.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © , 2025



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ:  ПИ № ФС77-50668 от 13.07.2012 г.