Luminescent determination of dopamine using a camera

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

It is shown that the interaction of dopamine with fluorescamine can be used as a basis for the luminescent determination of dopamine using a camera, since the product formed as a result of this interaction is characterized by a luminescence maximum in the visible region (485 nm), and a light-emitting diode emitting light in the near ultraviolet region (395 nm) is sufficient to excite the luminescence. The reaction should be carried out at pH 8–8.5 in a phosphate buffer solution for 5 min; fluorescamine should be added to the reaction mixture last. Some analytical characteristics of the determination using a camera are assessed and compared with the characteristics of a similar determination of dopamine using a professional spectrofluorometer and spectrophotometer. The detection limits of dopamine using a camera, spectrophotometer and spectrofluorometer were 1.8, 1.6 and 0.5 μM, the range of determined contents was 5.4–50 μM, 4.8–100 μM, 1.5–100 μM, respectively. The presence of common inorganic ions, the content of which is 10 times higher than the content of dopamine, does not interfere with the determination. The proposed method for determining dopamine can be used for quality control of drugs.

Full Text

Restricted Access

About the authors

S. A. Gromova

Lomonosov Moscow State University

Email: masha13_1992@mail.ru
Russian Federation, 1, Leninskie Gory, Moscow, 119991

M. V. Matyash

Lomonosov Moscow State University

Author for correspondence.
Email: masha13_1992@mail.ru
Russian Federation, 1, Leninskie Gory, Moscow, 119991

V. V. Apyari

Lomonosov Moscow State University

Email: masha13_1992@mail.ru
Russian Federation, 1, Leninskie Gory, Moscow, 119991

S. G. Dmitrienko

Lomonosov Moscow State University

Email: masha13_1992@mail.ru
Russian Federation, 1, Leninskie Gory, Moscow, 119991

Yu. A. Zolotov

Lomonosov Moscow State University; Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences

Email: masha13_1992@mail.ru
Russian Federation, 1, Leninskie Gory, Moscow, 119991; 31, Leninsky Ave., Moscow, 119991

References

  1. Апяри В.В., Горбунова М.В., Исаченко А.И., Дмитриенко С.Г., Золотов Ю.А. Использование бытовых цветорегистрирующих устройств в количественном химическом анализе // Журн. аналит. химии. 2017. Т. 72. № 11. С. 963. https://doi.org/10.7868/S0044450217110019 (Apyari V.V., Gorbunova M.V., Isachenko A.I., Dmitrienko S.G., Zolotov Yu A. Use of household color-recording devices in quantitative chemical analysis // J. Anal. Chem. 2017. V. 72. № 11. P. 1127. https://doi.org/10.1134/S106193481711003X)
  2. Моногарова О.В., Осколок К.В., Апяри В.В. Цветометрия в химическом анализе // Журн. аналит. химии. 2018. Т. 73. № 11. С. 857. https://doi.org/10.1134/S0044450218110063 (Monogarova O.V., Oskolok K.V., Apyari V.V. Colorimetry in chemical analysis // J. Anal. Chem. 2018. V. 73. P. 1076. https://doi.org/10.1134/S1061934818110060)
  3. Lapresta-Fernández A., Capitán-Vallvey L.F. Environmental monitoring using a conventional photographic digital camera for multianalyte disposable optical sensors // Anal. Chim. Acta. 2011. V. 706. № 2. P. 328. https://doi.org/10.1016/j.aca.2011.08.042
  4. Doeven E.H., Barbante G.J., Kerr E., Hogan C.F., Endler J.A., Francis P.S. Red–green–blue electrogenerated chemiluminescence utilizing a digital camera as detector // Anal. Chem. 2014. V. 86. № 5. P. 2727. https://doi.org/10.1021/ac404135f
  5. Jayawardane B.M., McKelvie I.D., Kolev S.D. A paper-based device for measurement of reactive phosphate in water // Talanta. 2012. V. 100. P. 454. https://doi.org/10.1016/j.talanta.2012.08.021
  6. Gárcia A., Erenas M.M., Marinetto E.D., Abad C.A., de Orbe-Payá I., Palma A.J., CapitánVallvey L.F. Mobile phone platform as portable chemical analyzer // Sens. Actuators B. 2011. V. 156. № 1. P. 350. https://doi.org/10.1016/j.snb.2011.04.045
  7. Shahvar A., Saraji M., Shamsaei D. Smartphone-based chemiluminescence sensing for TLC imaging // Sens. Actuators B: Chem. 2018. V. 255. P. 891. https://doi.org/10.1016/j.snb.2017.08.144
  8. Apyari V.V., Dmitrienko S.G., Zolotov Y.A. Unusual application of common digital devices: Potentialities of Eye-One Pro mini-spectrophotometer – A monitor calibrator for registration of surface plasmon resonance bands of silver and gold nanoparticles in solid matrices // Sens. Actuators B: Chem. 2013. V. 188. P. 1109. https://doi.org/10.1016/j.snb.2013.07.097
  9. Marchenko D.Y., Petrov S.I., Sandzhieva D.A., Dedov A.G. Express method of the quantitative determination of nitrites by computer colorimetry using new reagent compositions // Theor. Found. Chem. Eng. 2016. V. 50. P. 648. https://doi.org/10.1134/S0040579516040187
  10. Gorbunova M.V., Evstigneeva P.Yu., Apyari V.V., Dmitrienko S.G. A monitor calibrator as a portable tool for determination of luminescent compounds // IEEE Trans. Instrum. Meas. 2021. V. 70. Article 6002910. https://doi.org/10.1109/TI M.2020.3041390
  11. Gorbunova M.V., Safronova A.S., Vasilyeva A.A., Spitsyna K.S., Apyari V.V., Dmitrienko S.G. Sulfonamide drugs: Low-cost spectrofluorometric determination using a computer monitor calibrator for detection // Talanta. 2023. V. 257. Article 124383 https://doi.org/10.1016/j.talanta.2023.124383
  12. Кулинский В.И., Колесниченко Л.С. Катехоламины: биохимия, фармакология, физиология, клиника // Вопросы медицинской химии. 2002. Т. 48. № 1. С. 44.
  13. Derayea S.M., Samir E. A review on the use of fluorescamine as versatile and convenient analytical probe // Microchem. J. 2020. V. 156. Article 104835 https://doi.org/10.1016/j.microc.2020.104835
  14. Imai K. Fluorimetric assay of dopamine, nerepinephrine and their 3-o-methyl metabolites by using fluorescamine // J. Chromatogr. A. 1975. V. 105. P. 135. https://doi.org/10.1016/S0021-9673(01)81097-9
  15. Imai K., Tamura Z. Liquid chromatographic determination of urinary dopamine and norepinephrine as fluorescamine derivatives // Clin. Chim. Acta. 1978. V. 85. P. 1. https://doi.org/10.1016/0009-8981(78)90093-1
  16. Nakamura H., Pisano J.J. Specific detection of primary catecholamines and their 3-o-methyl derivatives on thin-layer plates using a fluorigenic reaction with fluorescamine // J. Chromatogr. A. 1978. V. 154. P. 39. https://doi.org/10.1016/S0021-9673(00)88479-4
  17. Ingles D.L., Gallimore D. High-performance liquid chromatography of fluorescamine-labelled amines in acid solvents // J. Chromatogr. A. 1985. V. 325. P. 346. https://doi.org/10.1016/S0021-9673(00)96042-4
  18. Djozan Dj., Farajzadeh M.A. The use of fluorescamine (Fluram) in fluorimetric trace analysis of primary amines of pharmaceutical and biological interest // J. Pharm. Biomed. Anal. 1992. V. 10. P. 1063. https://doi.org/10.1016/0731-7085(91)80120-X
  19. Толмачева В.В., Ярыкин Д.И., Горбунова М.В., Апяри В.В., Дмитриенко С.Г., Золотов Ю.А. Концентрирование катехоламинов на сверхсшитом полистироле и их определение методом высокоэффективной жидкостной хроматографии // Журн. аналит. химии. 2019. Т. 74. № 11. С. 803. https://doi.org/10.1134/S004445021909010X (Tolmacheva V.V., Yarykin D.I., Gorbunova M.V., Apyari V.V., Dmitrienko S.G., Zolotov Yu A. Preconcentration of catecholamins on hypercrosslinked polystyrene and their determination by high-performance liquid chromatography // J. Anal. Chem. 2019. V. 74. № 11. P. 1057. https://doi.org/10.1134/S1061934819090107)

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Scheme 1. Interaction between dopamine and fluorescamine.

Download (84KB)
3. Fig. 1. Normalised 3D luminescence spectrum of the product of the reaction of dopamine with fluorescamine. sdophamine = 25 μM, sfluorescamine = 200 μM, pH 8.5, V = 5.0 ml).

Download (76KB)
4. Fig. 2. Dependence of luminescence intensity on solution pH. sdophamine = 25 μM, sfluorexamine = 200 μM, 2.0 ml of universal buffer mixture, V = 5.0 ml, lastly (1) fluorescamine, (2) dopamine were injected.

Download (108KB)
5. Fig. 3. Effect of (a) nature of buffer solution, (b) interaction time, (c) fluorescamine concentration on the luminescence intensity of the product of reaction of dopamine with fluorescamine. (a), (b); 0.5 ml of buffer solution with pH 8.5; phosphate buffer solution (b), (c); V = 5.0 ml; fluorescamine was introduced last.

Download (103KB)
6. Fig. 4. Luminescence (a), (b) luminescence (c) and absorption spectra of dopamine solutions after interaction with fluorescamine. (a), (c) 0-100, (b) 0-10 μM dopamine; (a), (c) 200, (b) 1000 μM fluorescamine; 0.5 ml phosphate buffer solution with pH 8.5; t = 5 min; V = 5.0 ml; fluorescamine was injected last.

Download (99KB)
7. Fig. 5. Photographs of graduation (a) solutions of the product of interaction between dopamine and fluorescamine and (b) the graduation relationship for the determination of dopamine obtained with a camera. 0, 2.5, 2.5, 5, 10, 15, 25, 50, 100 µM dopamine; 200 µM fluorescamine; 0.5 ml phosphate buffer solution with pH 8.5; t = 5 min; V = 5.0 ml; fluorescamine was injected last.

Download (259KB)

Copyright (c) 2025 Russian Academy of Sciences