Coherent Population Trapping Resonance Parameters and Field Shifts during the Detection of Signals from Different Cross-Sectional Areas of the Interaction of Laser Radiation with Atoms

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The results of an experimental comparison of the parameters of the coherent population trapping (CPT) resonance for the 87Rb D1 line and the light shifts during the detection of signals from different cross-sectional areas of the interaction of laser radiation with atoms are presented. A method is proposed to search for zero-light-shift operating conditions and their automatic stabilization, which would improve the long-term stability of CPT-resonance-based microwave frequency standards.

Sobre autores

S. Ignatovich

Institute of Laser Physics, Siberian Branch, Russian Academy of Sciences

Email: stepan_i@mail.ru
Novosibirsk, 630090 Russia

M. Skvortsov

Institute of Laser Physics, Siberian Branch, Russian Academy of Sciences

Email: stepan_i@mail.ru
Novosibirsk, 630090 Russia

I. Mesenzova

Institute of Laser Physics, Siberian Branch, Russian Academy of Sciences

Email: stepan_i@mail.ru
Novosibirsk, 630090 Russia

N. Kvashnin

Institute of Laser Physics, Siberian Branch, Russian Academy of Sciences

Email: stepan_i@mail.ru
Novosibirsk, 630090 Russia

V. Vishnyakov

Institute of Laser Physics, Siberian Branch, Russian Academy of Sciences

Email: stepan_i@mail.ru
Novosibirsk, 630090 Russia

D. Brazhnikov

Institute of Laser Physics, Siberian Branch, Russian Academy of Sciences;Novosibirsk State University

Email: stepan_i@mail.ru
Novosibirsk, 630090 Russia;Novosibirsk, 630090 Russia

D. Tarasenko

Institute of Laser Physics, Siberian Branch, Russian Academy of Sciences

Autor responsável pela correspondência
Email: stepan_i@mail.ru
Novosibirsk, 630090 Russia

Bibliografia

  1. S. Knappe, R. Wynands, J. Kitching et al., J. Opt. Soc. Am. B 18, 1545 (2001).
  2. V. S. Letokhov and V. P. Chebotayev, Optical Science, Nonlinear Laser Spectroscopy, Springer-Verlag, Berlin (1977), Vol. 4.
  3. J. Vanier, Appl. Phys. 81, 421 (2005).
  4. J. Kitching, Appl. Phys. Rev. 5, 031302 (2018).
  5. S. Knappe, P. D. D. Schwindt, V. Shah et al., Opt. Express 13, 1249 (2005).
  6. S. Knappe, V. Shah, P. Schwindt et al. Appl. Phys. Lett. 85, 1460 (2004).
  7. С. А. Зибров, В. Л. Величанский, А. С. Зибров и др., Письма в ЖЭТФ 82, 534 (2005)
  8. JETP Lett. 82, 477 (2005).
  9. S. A. Zibrov, I. Novikova, D. F. Phillips et al. Phys. Rev. A 81, 013833 (2010).
  10. R. Michalzik, VCSELs, Springer, Berlin - Heidelberg (2013).
  11. M. I. Vaskovskaya, E. A. Tsygankov, D. Chuchelov et al., Opt. Express 27, 35856 (2019).
  12. V. Shah, V. Gerginov, P. D. D. Schwindt et al., Appl. Phys. Lett. 89, 151124 (2006).
  13. R. W. Drever, J. L. Hall, F. V. Kowalski et al. Appl. Phys. B 31, 97 (1983).

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Russian Academy of Sciences, 2023