Features of erythropoiesis of hibernating ground squirrels Urocitellus Undulatus

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The morphofunctional features of the bone marrow of the femur and humerus in long-tailed ground squirrels were studied in summer, fall, during torpor and during periods of short-term awakenings in winter (winter euthermia). Histological analysis showed an increase in the number and size of adipocytes in the bone marrow in animals in the torpor state, with partial replacement of myeloid tissue by adipose tissue. Despite the greater volume of bone marrow in the femur, significantly fewer nuclear cells were found in the bone marrow than in the humerus, but significantly more erythroid islets were found, especially during hibernation. In torpid ground squirrels there is a replacement of disc-shaped erythrocytes in the blood by atypical forms of erythrocytes (oval, macrocytes, and michenoid), the number of which decreases significantly during the winter euthermal period. The level of reticulocyte content increases in the hibernation period twofold compared to summer. The results obtained are discussed in the context of maintaining high blood oxygen levels during torpor and adaptation of erythropoiesis to conditions of prolonged hypothermia.

Texto integral

Acesso é fechado

Sobre autores

K. Lizorkina

Institute of Cell Biophysics RAS - separate subdivision of Federal State Budgetary Institution of Science Federal Research Centre ‘Pushchino Scientific Centre for Biological Research RAS’

Autor responsável pela correspondência
Email: lizorkina_kseniia@mail.ru
Rússia, Pushchino, Moscow Region

G. Aksenova

Institute of Cell Biophysics RAS - separate subdivision of Federal State Budgetary Institution of Science Federal Research Centre ‘Pushchino Scientific Centre for Biological Research RAS’

Email: lizorkina_kseniia@mail.ru
Rússia, Pushchino, Moscow Region

V. Afanasyev

Institute of Cell Biophysics RAS - separate subdivision of Federal State Budgetary Institution of Science Federal Research Centre ‘Pushchino Scientific Centre for Biological Research RAS’

Email: lizorkina_kseniia@mail.ru
Rússia, Pushchino, Moscow Region

P. Teplova

Institute of Cell Biophysics RAS - separate subdivision of Federal State Budgetary Institution of Science Federal Research Centre ‘Pushchino Scientific Centre for Biological Research RAS’

Email: lizorkina_kseniia@mail.ru
Rússia, Pushchino, Moscow Region

N. Zakharova

Institute of Cell Biophysics RAS - separate subdivision of Federal State Budgetary Institution of Science Federal Research Centre ‘Pushchino Scientific Centre for Biological Research RAS’

Email: lizorkina_kseniia@mail.ru
Rússia, Pushchino, Moscow Region

Bibliografia

  1. Giroud S, Yamaguchi Y, Terrien J, Henning RH (2024) Editorial: Torpor and hibernation: metabolic and physiological paradigms. Front Physiol 15:1441872. https://doi.org/10.3389/fphys.2024.1441872
  2. Kuznetsova EV, Feoktistova NY, Naidenko SV, Surov AV, Tikhonova NB, Kozlovskii JE (2016) Seasonal changes in blood cells and biochemical parameters in the Mongolian hamster (Allocricetulus curtatus). Biol Bull Russ Acad Sci 43(4):344–349. https://doi.org/10.1134/S1062359016040087
  3. Teplova PO, Komelina NP, Yegorov AY, Lizorkina KI, Zakharova NM (2024) Adaptive Blood Cell Variability in the Annual Life Cycle of the Ground Squirrel Urocitellus undulatus. J Evol Biochem Phys 60(2):443–452. https://doi.org/10.1134/S0022093024020017
  4. Tøien Ø, Drew KL, Chao ML, Rice ME (2001) Ascorbate dynamics and oxygen consumption during arousal from hibernation in Arctic ground squirrels. Am J Physiol Regul Integr Comp Physiol 281(2):R572-83.https://doi.org/10.1152/ajpregu.2001.281.2.R572
  5. Gehrke S, Rice S, Stefanoni D, Wilkerson RB, Nemkov T, Reisz JA, Hansen KC, Lucas A, Cabrales P, Drew K, D'Alessandro A (2019) Red Blood Cell Metabolic Responses to Torpor and Arousal in the Hibernator Arctic Ground Squirrel. J Proteome Res 18(4):1827–1841. https://doi.org/10.1021/acs.jproteome.9b00018.
  6. Katiukhin LN, Chalabov SI, Bekshokov KS, Pokhmelnova MS, Klichkhanov NK, Nikitina ER (2023) Seasonal changes in blood rheology in little ground squirrels. J Exp Zool A Ecol Integr Physiol 339(5):474–486. https://doi.org/10.1002/jez.2693.
  7. Klichkhanov NK, Nikitina ER, Shihamirova ZM, Astaeva MD, Chalabov SI, Krivchenko AI (2021) Erythrocytes of Little Ground Squirrels Undergo Reversible Oxidative Stress During Arousal From Hibernation. Front Physiol 12:730657. https://doi.org/10.3389/fphys.2021.730657.
  8. Lomako VV, Shilo AV, Kovalenko IF, Babiĭchuk GA (2015) Erythrocytes of hetero- and homoiothermal animals in natural and artificial hypothermia. Zh Evol Biokhim Fiziol 51(1):52–59
  9. Repina SV, Repin NV (2008) Peculiarities of RBCs resistance to acid hemolysis in hibernating mammals. Bioelectrochemistry 73(2):106–109. https://doi.org/10.1016/j.bioelechem.2008.04.009.
  10. Dzierzak E, Philipsen S (2013) Erythropoiesis: development and differentiation. Cold Spring Harb Perspect Med 3(4):a011601. https://doi.org/10.1101/cshperspect.a011601.
  11. Pretini V, Koenen MH, Kaestner L, Fens MHAM, Schiffelers RM, Bartels M, van Wijk R (2019) Red Blood Cells: Chasing Interactions. Front Physiol 10:945. https://doi.org/10.3389/fphys.2019.00945.
  12. Huisjes R, Bogdanova A, van Solinge WW, Schiffelers RM, Kaestner L, van Wijk R (2018) Squeezing for Life - Properties of Red Blood Cell Deformability. Front Physiol 9:656. https://doi.org/10.3389/fphys.2018.00656.
  13. Viallat A, Abkarian M (2014) Red blood cell: from its mechanics to its motion in shear flow. Int J Lab Hematol 36(3):237–243. https://doi.org/10.1111/ijlh.12233.
  14. Drew KL, Harris MB, LaManna JC, Smith MA, Zhu XW, Ma YL (2004) Hypoxia tolerance in mammalian heterotherms. J Exp Biol 207(Pt 18):3155–3162. https://doi.org/10.1242/jeb.01114
  15. Ma YL, Zhu X, Rivera PM, Tøien Ø, Barnes BM, LaManna JC, Smith MA, Drew KL (2005) Absence of cellular stress in brain after hypoxia induced by arousal from hibernation in Arctic ground squirrels. Am J Physiol Regul Integr Comp Physiol 289(5):R1297-306. https://doi.org/10.1152/ajpregu.00260.2005
  16. Ramirez J-M, Folkow LP, Blix AS (2007) Hypoxia tolerance in mammals and birds: from the wilderness to the clinic. Annu Rev Physiol 69:113–143. https://doi.org/10.1146/annurev.physiol.69.031905.163111
  17. Uzenbaeva LB, Belkin VV, Ilyukha VA, Kizhina AG, Yakimova AE (2015) Profiles and morphology of peripheral blood cells in three bat species of Karelia during hibernation. J Evol Biochem Phys 51(4):342–348. https://doi.org/10.1134/S0022093015040109
  18. Aksyonova GE, Logvinovich OS, Afanasyev VN, Lizorkina KI (2023) Cell cycle parameters and ornithine decarboxylase activity in the red bone marrow of hibernating ground squirrels Urocitellus undulatus. Biofizika 68(5):964–972. https://doi.org/10.31857/S0006302923050174
  19. Zakharova NM, Tarahovsky YS, Khrenov MO (2024) A Comparative Study of the Temperature Coefficient Q10 in Hibernating Ground Squirrels Urocitellus undulatus and Cooled Rats of Different Ages. J Evol Biochem Phys 60 1437–1446. https://doi.org/10.1134/S0022093024040148
  20. Heim AB, Chung D, Florant GL, Chicco AJ (2017) Tissue-specific seasonal changes in mitochondrial function of a mammalian hibernator. Am J Physiol Regul Integr Comp Physiol 313(2):R180-R190. https://doi.org/10.1152/ajpregu.00427.2016
  21. Janotka M, Ostadal P (2021) Biochemical markers for clinical monitoring of tissue perfusion. Mol Cell Biochem 476(3):1313–1326. https://doi.org/10.1007/s11010-020-04019-8
  22. Бурых ЭА, Сороко СИ (2014) Компенсаторная роль системы кровообращения при острой гипоксической гипоксии у человека. Экол чел 7:30–36. [Burykh EA, Soroko SI (2014) Compensatory role of the circulatory system in acute hypoxic hypoxia in humans. Hum Ecol 7: 30– 36 (In Russ)].
  23. Maginniss LA, Milsom WK (1994) Effects of hibernation on blood oxygen transport in the golden-mantled ground squirrel. Respir Physiol 95(2):195–208. https://doi.org/10.1016/0034-5687(94)90116-3
  24. Warnecke L, Turner JM, Bollinger TK, Misra V, Cryan PM, Blehert DS, Wibbelt G, Willis CKR (2013) Pathophysiology of white-nose syndrome in bats: a mechanistic model linking wing damage to mortality. Biol Lett 9(4):20130177. https://doi.org/10.1098/rsbl.2013.0177
  25. Vrij EL de, Henning RH (2015) How hibernation and hypothermia help to improve anticoagulant control. Temperature (Austin) 2(1):44–46. https://doi.org/10.4161/23328940.2014.967595
  26. Hu H-X, Du F-Y, Fu W-W, Jiang S-F, Cao J, Xu S-H, Wang H-P, Chang H, Goswami N, Gao Y-F (2017) A dramatic blood plasticity in hibernating and 14-day hindlimb unloading Daurian ground squirrels (Spermophilus dauricus). J Comp Physiol B 187(5-6):869–879. https://doi.org/10.1007/s00360-017-1092-7
  27. Ануфриев АИ (2008) Механизмы зимней спячки мелких млекопитающих Якутии. Новосибирск: Из-во СО РАН.158 с. [Anufriev AI (2008) Mechanisms of Hibernation of Small Mammals of Yakutia (Sib. Otd. Ross. Akad. Nauk, Novosibirsk. (In Russ)].
  28. Corrons JLV, Casafont LB, Frasnedo EF (2021) Concise review: how do red blood cells born, live, and die? Ann Hematol 100(10):2425–2433. https://doi.org/10.1007/s00277-021-04575-z.
  29. Spurrier WA, Dawe AR (1973) Several blood and circulatory changes in the hibernation of the 13-lined ground squirrel, Citellus tridecemlineatus. Comp Biochem Physiol A Comp Physiol 44(2):267–282. https://doi.org/10.1016/0300-9629(73)90479-9
  30. Yasuma Y, McCarron RM, Spatz M, Hallenbeck JM (1997) Effects of plasma from hibernating ground squirrels on monocyte-endothelial cell adhesive interactions. Am J Physiol 273(6):R1861-9. https://doi.org/10.1152/ajpregu.1997.273.6.R1861
  31. Cooper ST, Sell SS, Fahrenkrog M, Wilkinson K, Howard DR, Bergen H, Cruz E, Cash SE, Andrews MT, Hampton M (2016) Effects of hibernation on bone marrow transcriptome in thirteen-lined ground squirrels. Physiol Genomics 48(7):513–525. https://doi.org/10.1152/physiolgenomics.00120.2015

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Microphotographs of bone marrow preparations of long-tailed ground squirrels Urocitellus undulatus in active summer, autumn and torpid states.

Baixar (1MB)
3. Fig. 2. The number of erythroid islets in the CM of both bones in the active summer, autumn, torpid and winter euthermic (WE) states of ground squirrels.

Baixar (67KB)
4. Fig. 3. Percentage of nucleated cells in the S phase of the cell cycle in the bone marrow of (a) the humerus according to [1] and (b) the femur of ground squirrels in the active summer, torpid and winter euthermic states (n = 11 summer, n = 12 torpor, n = 11 EE).

Baixar (74KB)
5. Fig. 4. Changes in the number of nucleated cells *10⁸/g bone marrow tissue of long-tailed ground squirrels in the humerus (light columns) and femur (dark columns) in the active summer, torpid and winter euthermic (WE) states (n = 7 for each state)

Baixar (64KB)
6. Fig. 5. Micrographs of blood smear preparations from long-tailed ground squirrels Urocitellus undulatus. Diff-Quick staining.

Baixar (297KB)
7. Fig. 6. Seasonal changes in the number of reticulocytes relative to the total content of erythrocytes in the peripheral blood of ground squirrels Urocitellus undulatus (n=6 for each studied condition)

Baixar (50KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2024