Comparative characterization of Kupffer cells in the livers of SHR and Wistar rats
- Авторлар: Nikitina I.A.1, Razenkova V.A.1, Korzhevskii D.E.1
-
Мекемелер:
- Institute of Experimental Medicine
- Шығарылым: Том 60, № 6 (2024)
- Беттер: 608–616
- Бөлім: EXPERIMENTAL ARTICLES
- URL: https://gynecology.orscience.ru/0044-4529/article/view/648098
- DOI: https://doi.org/10.31857/S0044452924070039
- EDN: https://elibrary.ru/KKDGIO
- ID: 648098
Дәйексөз келтіру
Аннотация
In the present study, the structural features of resident liver macrophages were analyzed in the context of sustained arterial hypertension, compared to a normotensive control group. To identify resident macrophages in liver samples from nine-month-old male SHR and Wistar rats (n = 14), immunohistochemical staining against the Iba-1 protein was employed. Morphometric parameters and the spatial distribution patterns of Kupffer cells were assessed using the mathematical processing and image analysis software ImageJ and GIMP. It was shown that Kupffer cells in liver samples from SH rats predominantly exhibit a poorly branched or ellipsoidal shape and do not display a direct correlation with their location within the hepatic acinus, in contrast to macrophages from the Wistar group. Statistically significant differences were observed in the distribution patterns of Kupffer cells: in the SHR group, cells were distributed more uniformly within the hepatic acinus compared to those in the Wistar group, where the highest density of distribution was observed in the intermediary zone of the acinus. Identified structural and functional characteristics of resident liver macrophages in SH rats may be attributed to the functional disturbances in the liver associated with sustained arterial hypertension.
Негізгі сөздер
Толық мәтін

Авторлар туралы
I. Nikitina
Institute of Experimental Medicine
Хат алмасуға жауапты Автор.
Email: inga06819@gmail.com
Ресей, Saint Petersburg
V. Razenkova
Institute of Experimental Medicine
Email: inga06819@gmail.com
Ресей, Saint Petersburg
D. Korzhevskii
Institute of Experimental Medicine
Email: inga06819@gmail.com
Ресей, Saint Petersburg
Әдебиет тізімі
- Bennett H, Troutman TD, Sakai M, Glass CK (2021) Epigenetic Regulation of Kupffer Cell Function in Health and Disease. Front Immunol 11: 609618. https://doi.org/10.3389/fimmu.2020.609618
- Helmy KY, Katschke KJ, Gorgani NN, Kljavin NM, Elliott JM, Diehl L, Scales SJ, Ghilardi N, van Lookeren Campagne M (2006) CRIg: a macrophage complement receptor required for phagocytosis of circulating pathogens. Cell 124(5):915–927. https://doi.org/10.1016/j.cell.2005.12.039
- Liu R, Scimeca M, Sun Q, Melino G, Mauriello A, Shao C, Shi Y, Piacentini M, Tisone G, Agostini M (2023) Harnessing metabolism of hepatic macrophages to aid liver regeneration. Cell Death Dis 14(8):1–10. https://doi.org/10.1038/s41419-023-06066-7
- Thomas SK, Wattenberg MM, Choi-Bose S, Uhlik M, Harrison B, Coho H, Cassella CR, Stone ML, Patel D, Markowitz K, Delman D, Chisamore M, Drees J, Bose N, Beatty GL (2023) Kupffer cells prevent pancreatic ductal adenocarcinoma metastasis to the liver in mice. Nat Commun 14(1):6330. https://doi.org/10.1038/s41467-023-41771-z
- Wen SW, Ager EI, Christophi C (2013) Bimodal role of Kupffer cells during colorectal cancer liver metastasis. Cancer Biology & Therapy 14(7):606–613. https://doi.org/10.4161/cbt.24593
- Chen Y, Liu Z, Liang S, Luan X, Long F, Chen J, Peng Y, Yan L, Gong J (2008) Role of Kupffer cells in the induction of tolerance of orthotopic liver transplantation in rats. Liver Transpl 14(6):823–836. https://doi.org/10.1002/lt.21450
- Mosoian A, Zhang L, Hong F, Cunyat F, Rahman A, Bhalla R, Panchal A, Saiman Y, Fiel MI, Florman S, Roayaie S, Schwartz M, Branch A, Stevenson M, Bansal MB (2017) Frontline Science: HIV infection of Kupffer cells results in an amplified proinflammatory response to LPS. J Leukocyte Biol 101(5):1083–1090. https://doi.org/10.1189/jlb.3HI0516-242R
- Park S-J, Garcia Diaz J, Um E, Hahn YS (2023) Major roles of kupffer cells and macrophages in NAFLD development. Front Endocrinol (Lausanne) 14:1150118. https://doi.org/10.3389/fendo.2023.1150118
- Tran S, Baba I, Poupel L, Dussaud S, Moreau M, Gélineau A, Marcelin G, Magréau-Davy E, Ouhachi M, Lesnik P, Boissonnas A, Le Goff W, Clausen BE, Yvan-Charvet L, Sennlaub F, Huby T, Gautier EL (2020) Impaired Kupffer Cell Self-Renewal Alters the Liver Response to Lipid Overload during Non-alcoholic Steatohepatitis. Immunity 53(3):627-640.e5. https://doi.org/10.1016/j.immuni.2020.06.003
- Kućmierz J, Frąk W, Rysz J, Młynarska E, Franczyk B (2021) Molecular Interactions of Arterial Hypertension in Its Target Organs. Int J Mol Sci 22. https://doi.org/10.3390/ijms22189669
- Touyz RM, Camargo LL, Rios FJ, Alves-Lopes R, Neves KB, Eluwole O, Maseko MJ, Lucas-Herald A, Blaikie Z, Montezano AC, Feldman RD (2022) Arterial Hypertension. In: Comprehensive Pharmacology. Elsevier, pp 469–487. https://doi.org/10.1016/B978-0-12-820472-6.00192-4
- Sone H, Suzuki H, Takahashi A, Yamada N (2001) Disease model: hyperinsulinemia and insulin resistance. Part A-targeted disruption of insulin signaling or glucose transport. Trends Mol Med 7:320–2
- Grigorev IP, Korzhevskii DE (2018) Current Technologies for Fixation of Biological Material for Immunohistochemical Analysis (Review). Sovrem Tehnol Med 10(2):156. https://doi.org/10.17691/stm2018.10.2.19
- Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S, Rueden C, Saalfeld S, Schmid B, Tinevez J-Y, White DJ, Hartenstein V, Eliceiri K, Tomancak P, Cardona A (2012) Fiji: an open-source platform for biological-image analysis. Nat Methods 9(7):676–682. https://doi.org/10.1038/nmeth.2019
- GIMP: GNU Image manipulation program. https://www.gimp.org/
- Brocher J (2023) biovoxxel/BioVoxxel-Toolbox: BioVoxxel Toolbox v2.6.0. biovoxxel/BioVoxxel-Toolbox. https://doi.org/10.5281/zenodo.5986129
- Wijesundera KK, Izawa T, Tennakoon AH, Murakami H, Golbar HM, Katou-Ichikawa C, Tanaka M, Kuwamura M, Yamate J (2014) M1- and M2-macrophage polarization in rat liver cirrhosis induced by thioacetamide (TAA), focusing on Iba1 and galectin-3. Exp Mol Pathol 96(3):382–392. https://doi.org/10.1016/j.yexmp.2014.04.003
- Nikitina IA, Razenkova VA, Kirik OV, Korzhevskii DE (2023) Visualisation of kupffer cells in the rat liver with poly- and monoclonal antibodies against microglial-specific protein Iba-1. Medical Acad J 23(1):85–94. https://doi.org/10.17816/MAJ133649
- Zhang X, Wang L-P, Ziober A, Zhang PJ, Bagg A (2021) Ionized Calcium Binding Adaptor Molecule 1 (IBA1). Am J Clin Pathol 156(1):86–99. https://doi.org/10.1093/ajcp/aqaa209
- Nikitina IA, Razenkova VA, Fedorova EA, Kirik OV, Korzhevskii DE (2024) Technology of Combined Identification of Macrophages and Collagen Fibers in Liver Samples. Sovrem Tehnol Med 16(3):24. https://doi.org/10.17691/stm2024.16.3.03
- Kim J, Zhang C, Sperati C, Bagnasco S, Barman I (2023) Non-Perturbative Identification and Subtyping of Amyloidosis in Human Kidney Tissue with Raman Spectroscopy and Machine Learning. Biosensors 13:466. https://doi.org/10.3390/bios13040466
- Spoorthy D, Manne SR, Dhyani V, Swain S, Shahulhameed S, Mishra S, Kaur I, Giri L, Jana S (2019) Automatic Identification of Mixed Retinal Cells in Time-Lapse Fluorescent Microscopy Images using High-Dimensional DBSCAN. Annu Int Conf IEEE Eng Med Biol Soc 2019:4783–4786. https://doi.org/10.1109/EMBC.2019.8857375
- Kietzmann T (2017) Metabolic zonation of the liver: The oxygen gradient revisited. Redox Biol 11:622–630. https://doi.org/10.1016/j.redox.2017.01.012
- Sasse D, Spornitz UM, Maly IP (1992) Liver architecture. Enzyme 46(1–3):8–32. https://doi.org/10.1159/000468776
- Sleyster EC, Knook DL (1982) Relation between localization and function of rat liver Kupffer cells. Lab Invest 47(5):484–490
- Elchaninov A, Lokhonina A, Makarov A, Vishnyakova P, Kananykhina E, Nikitina M, Grinberg M, Bykov A, Charyeva I, Bolshakova G, Fatkhudinov T (2019) Phenotypic Polymorphism of Normal Rat Liver Kupffer Cells. J Anat Histopathol 8:35–39. https://doi.org/10.18499/2225-7357-2019-8-3-35-39
- Zumerle S, Calì B, Munari F, Angioni R, Di Virgilio F, Molon B, Viola A (2019) Intercellular Calcium Signaling Induced by ATP Potentiates Macrophage Phagocytosis. Cell Rep 27(1):1-10.e4. https://doi.org/10.1016/j.celrep.2019.03.011
- Цыркунов ВМ, Андреев ВП, Кравчук РИ, Прокопчик НИ (2017) Клиническая Цитология печени: клетки Купффера. Журн Гродненск гос мед универс 4:419–431. [Tsyrkunov VM, Andreyev VP, Kravchuk RI, Prokopchik NI (2017) Clinical Cytology of the Liver: Kupffer Cells. J Grodno State Med Univ 4:419–431. (In Russ)].
- Cai J, Hu M, Chen Z, Ling Z (2021) The roles and mechanisms of hypoxia in liver fibrosis. J Transl Med 19(1):186. https://doi.org/10.1186/s12967-021-02854-x
- Tedesco S, Scattolini V, Albiero, Bortolozzi M, Avogaro, Cignarella, Fadini (2019) Mitochondrial Calcium Uptake Is Instrumental to Alternative Macrophage Polarization and Phagocytic Activity. Int J Mol Sci 20:4966. https://doi.org/10.3390/ijms20194966
- Zumerle S, Calì B, Munari F, Angioni R, Di Virgilio F, Molon B, Viola A (2019) Intercellular Calcium Signaling Induced by ATP Potentiates Macrophage Phagocytosis. Cell Rep 27(1):1-10.e4. https://doi.org/10.1016/j.celrep.2019.03.011
Қосымша файлдар
