Сравнительный анализ иммунного ответа, кишечной микробиоты и восприимчивости к бактериям Bacillus thuringiensis у колорадского жука Leptinotarsa decemlineata
- Авторы: Терещенко Д.С.1, Гризанова Е.В.1, Шелихова Е.В.1, Дубовский И.М.1
-
Учреждения:
- Новосибирский государственный аграрный университет, Кафедра защиты растений
- Выпуск: Том 60, № 6 (2024)
- Страницы: 649–664
- Раздел: ЭКСПЕРИМЕНТАЛЬНЫЕ СТАТЬИ
- URL: https://gynecology.orscience.ru/0044-4529/article/view/648116
- DOI: https://doi.org/10.31857/S0044452924070079
- EDN: https://elibrary.ru/KJZNRG
- ID: 648116
Цитировать
Аннотация
Биологические инсектициды для защиты растений на основе бактерий Bacillus thuringiensis (Bt) обладают высокой специфичностью действия по отношению к различным отрядам насекомых и безопасны для окружающей среды. Колорадский жук (Leptinotarsa decemlineata) самый распространенный вредитель пасленовых культур в мире. Широкий ареал обитания колорадского жука в различных по климатическим условиям регионах, быстрое формирование устойчивости к широкому спектру химических инсектицидов, ставит вопрос за счет каких защитных реакций он обладает такой экологической пластичностью и насколько быстро формирует устойчивость к биологическим инсектицидам. В данном исследовании у личинок колорадского жука из двух районов Новосибирской области (НСО) изучены показатели клеточного и гуморального иммунитета, активность ферментов антиоксидантной и детоксицирующей систем, микробиота кишечника и восприимчивость к бактериям B. thuringiensis. Общее количество гемоцитов и лизоцим-подобная антибактериальная активность в гемолимфе у насекомых Венгеровского района НСО в 1,5–2 раза выше по сравнению с личинками Ордынского района НСО. В кишечнике и жировом теле у личинок из Ордынского района отмечена повышенная в 1.7–2.5 раза активность ферментов детоксикации по сравнению с Венгеровской группой насекомых. Показано, что доминирующей группой кишечной микробиоты насекомых из двух районов НСО являются бактерии семейства Enterobacteriaceae и Citrobacter, однако у личинок из Ордынского района одной из мажорных групп являются бактерии рода Spiroplasma. Установлено, что насекомые не отличались по уровню чувствительности к бактериям B. thuringiensis. Развитие бактериальной инфекции приводит к увеличению активности ФО в гемолимфе насекомых в 2–3 раза, при этом у группы насекомых Ордынского района НСО зарегистрирован 1.5–кратное увеличение общего количества гемоцитов. Таким образом, установлено, что насекомые разных географических популяций могут эффективно перестраивать защитную стратегию от энтомопатогенов, за счет баланса между их конституциональными и индуцированными системами резистентности.
Ключевые слова
Полный текст

Об авторах
Д. С. Терещенко
Новосибирский государственный аграрный университет, Кафедра защиты растений
Email: dubovskiy2000@yahoo.com
Россия, 630039, Новосибирск
Е. В. Гризанова
Новосибирский государственный аграрный университет, Кафедра защиты растений
Email: dubovskiy2000@yahoo.com
Россия, 630039, Новосибирск
Е. В. Шелихова
Новосибирский государственный аграрный университет, Кафедра защиты растений
Email: dubovskiy2000@yahoo.com
Россия, 630039, Новосибирск
И. М. Дубовский
Новосибирский государственный аграрный университет, Кафедра защиты растений
Автор, ответственный за переписку.
Email: dubovskiy2000@yahoo.com
Россия, Новосибирск
Список литературы
- Alyokhin A, Rondon SI, Gao Y (2022) Insect Pests of Potato: Global Perspectives on Biology and Management. Academic Press 2nd Ed, London, 501.
- Schoville SD, Chen YH, Andersson MN, Benoit JB, Bhandari A, Bowsher JH, Brevik K, Cappelle K, Chen MJM, Childers AK, Childers C, Christiaens O, Clements J, Didion EM, Elpidina EN, Engsontia P, Friedrich M, García-Robles I, Gibbs RA, Goswami C, Grapputo A, Gruden K, Grynberg M, Henrissat B, Jennings EC, Jones JW, Kalsi M, Khan SA, Kumar A, Li F, Lombard V, Ma X, Martynov A, Miller NJ, Mitchell RF, Munoz-Torres M, Muszewska A, Oppert B, Palli SR, Panfilio KA, Pauchet Y, Perkin LC, Petek M, Poelchau MF, Record É, Rinehart JP, Robertson HM, Rosendale AJ, Ruiz-Arroyo VM, Smagghe G, Szendrei Z, Thomas GWC, Torson AS, Vargas Jentzsch IM, Weirauch MT, Yates AD, Yocum GD, Yoon JS, Richards S (2018) A model species for agricultural pest genomics: thegenome of the Colorado potato beetle, Leptinotarsa decemlineata (Coleoptera: Chrysomelidae). ScientificReports 8 (1): 1931.https://doi.org/10.1038/s41598-018-20154-1
- Izzo VM, Chen YH, Schoville SD, Wang C, Hawthorne DJ (2018) Origin of Pest Lineages of the Colorado Potato Beetle (Coleoptera: Chrysomelidae). J Econ Entomol 111 (2): 868–878.https://doi.org/10.1093/jee/tox367
- Molnar I, Rakosy-Tican E (2021) Difficulties in Potato Pest Control: The Case of Pyrethroids on Colorado Potato Beetle. Agronomy 11(10): 1920.https://doi.org/10.3390/agronomy11101920
- Roh JY, Choi JY, Li MS, Jin BR, Je YH (2007) Bacillus thuringiensis as a specific, safe, and effective tool for insect pest control. J Microbiol Biotechnol 17(4): 547–559.
- Domínguez-Arrizabalaga M, Villanueva M, Escriche B, Ancín-Azpilicueta C, Caballero P (2020) Insecticidal Activity of Bacillus thuringiensis Proteins against Coleopteran Pests. Toxins 12(7): 430.https://doi.org/10.3390/toxins12070430
- Crickmore N, Berry C, Panneerselvam S, Mishra R, Connor TR, Bonning BC (2021) A structure-based nomenclature for Bacillus thuringiensis and other bacteria-derived pesticidal proteins. Journal of Invertebrate Pathology 186:107438. https://doi.org/10.1016/j.jip.2020.107438
- Dubovskiy IM, Grizanova EV, Gerasimova SV (2023) Plant recombinant gene technology for pest control in XXI century: from simple transgenesis to CRISPR/Cas. In: Kumar A, Arora S, Ogita S, Yau Y-Y, Mukherjee K (eds) Gene editing in plants: CRISPR-Cas and its applications. Springer, Singapore.https://doi.org/10.1007/978-981-99-8529-6_2
- Kumar P, Kamle M, Borah R, Mahato DK, Sharma B (2021) Bacillus thuringiensis as microbial biopesticide: uses and application for sustainable agriculture. Egypt J Biol Pest Control 31: 95.https://doi.org/10.1186/s41938-021-00440-3
- Dubovskiy IM, Grizanova EV, Tereshchenko D, Krytsyna TI, Alikina T, Kalmykova G, Kabilov M, Coates CJ (2021) Bacillus thuringiensis spores and Cry3A toxins act synergistically to expedite colorado potato beetle mortality. Toxins (Basel) 13(11): 746.https://doi.org/10.3390/toxins13110746
- Bravo A, Gill SS, Soberón M (2007) Mode of action of Bacillus thuringiensis Cry and Cyt toxins and their potential for insect control. Toxicon 49(4):423–435.https://doi.org/10.1016/j.toxicon.2006.11.022
- Soberón M, Gill SS, Bravo A (2009) Signaling versus punching hole: How do Bacillus thuringiensis toxins kill insect midgut cells? Cellular and Molecular Life Sciences 66(8):1337–1349.hhttps://doi.org/10.1007/s00018-008-8330-9
- Ruiz-Arroyo VM, García-Robles I, Ochoa-Campuzano C, Goig GA, Zaitseva E, Baaken G, Martínez-Ramírez AC, Rausell C, Real MD (2017) Validation of ADAM10 metalloprotease as a Bacillus thuringiensis Cry3Aa toxin functional receptor in Colorado potato beetle (Leptinotarsa decemlineata). Insect Mol Biol 26(2):204–214.https://doi.org/10.1111/imb.12285
- García-Robles I, De Loma J, Capilla M, Roger I, Boix-Montesinos P, Carrión P, Vicente M, López-Galiano MJ, Real MD, Rausell C (2020) Proteomic insights into the immune response of the Colorado potato beetle larvae challenged with Bacillus thuringiensis. Dev Comp Immunol 104:103525. https://doi.org/10.1016/j.dci.2019.103525
- Yaroslavtseva ON, Dubovskiy IM, Khodyrev VP, Duisembekov BA, Kryukov VY, Glupov VV (2017) Immunological mechanisms of synergy between fungus Metarhizium robertsii and bacteria Bacillus thuringiensis ssp. morrisoni on Colorado potato beetle larvae. J Insect Physiol 96:14-20. https://doi.org/10.1016/j.jinsphys.2016.10.004
- Hillyer JF (2016) Insect immunology and hematopoiesis. Dev Comp Immunol. 58: 102–118.https://doi.org/10.1016/j.dci.2015.12.006
- Marmaras VJ, Lampropoulou M (2009) Regulators and signalling in insect haemocyte immunity. Cell Signal 21(2): 186–195.https://doi.org/10.1016/j.cellsig.2008.08.014
- Grizanova EV, Krytsyna TI, Surcova VS, Dubovskiy IM (2019) The role of midgut nonspecific esterase in the susceptibility of Galleria mellonella larvae to Bacillus thuringiensis. J Invertebr Pathol 166:107208. https://doi.org/10.1016/j.jip.2019.107208
- Hoffman RL (2003) A new genus and species of trigoniuline milliped from Western Australia (Spirobolida: Pachybolidae: Trigoniulinae). Records of the Western Australian Museum 22 (1): 17–22. https://doi.org/10.18195/issn.0312-3162.22(1).2003.017-022
- Felton GW, Summers CB (1995) Antioxidant systems in insects. Arch Insect Biochem Physiol 29(2): 187–197.https://doi.org/10.1002/arch.940290208
- Krishnan N, Kodrík D (2006) Antioxidant enzymes in Spodoptera littoralis (Boisduval): Are they enhanced to protect gut tissues during oxidative stress? J Insect Physiol 52(1): 11–20. https://doi.org/10.1016/j.jinsphys.2005.08.009
- Krishnan N, Kodrík D, Turanli F, Sehnal F (2007) Stage-specific distribution of oxidative radicals and antioxidant enzymes in the midgut of Leptinotarsa decemlineata. J Insect Physiol 53(1): 67–74. https://doi.org/10.1016/j.jinsphys.2006.10.001
- Yu Y, Wang Y, Li H, Yu X, Shi W, Zhai J (2021) Comparison of Microbial Communities in Colorado Potato Beetles (Leptinotarsa decemlineata Say) Collected From Different Sources in China. Front Microbiol 12:639913. https://doi.org/10.3389/fmicb.2021.639913
- Polenogova OV, Noskov YA, Yaroslavtseva ON, Kryukova NA, Alikina T, Klementeva TN, Andrejeva J, Khodyrev VP, Kabilov MR, Kryukov VY, Glupov VV (2021) Influence of Bacillus thuringiensis and avermectins on gut physiology and microbiota in Colorado potato beetle: Impact of enterobacteria on susceptibility to insecticides. PLoS One 16(3): e0248704.https://doi.org/10.1371/journal.pone.0248704
- Wang GH, Berdy BM, Velasquez O, Jovanovic N, Alkhalifa S, Minbiole KPC, Brucker RM (2020) Changes in Microbiome Confer Multigenerational Host Resistance after Sub-toxic Pesticide Exposure. Cell Host Microbe 27(2):213–224.e7. https://doi.org/10.1016/j.chom.2020.01.009
- Muratoglu H, Demirbag Z, Sezen K (2011) The first investigation of the diversity of bacteria associated with Leptinotarsa decemlineata (Coleoptera: Chrysomelidae). Biologia 66. 288–293.https://doi.org/10.2478/s11756-011-0021-6
- Montllor CB, Maxmen A, Purcell AH (2002) Facultative bacterial endosymbionts benefit pea aphids Acyrthosiphon pisum under heat stress. Ecol Entomol 27: 189–195.https://doi.org/10.1046/j.1365-2311.2002.00393.x
- Koga R, Tsuchida T, Fukatsu T (2003) Changing partners in an obligate symbiosis: A facultative endosymbiont can compensate for loss of the essential endosymbiont Buchnera in an aphid. Proceedings. Biol sci The Royal Society 270: 2543–2550.https://doi.org/10.1098/rspb.2003.2537
- Brownlie JC, Cass BN, Riegler M, Witsenburg JJ, Iturbe-Ormaetxe I, McGraw EA, O’Neill SL (2009) Evidence for metabolic provisioning by a common invertebrate endosymbiont, Wolbachia pipientis, during periods of nutritional stress. PLoS Pathog 5(4): e1000368.https://doi.org/10.1371/journal.ppat.1000368
- Charlat S, Duplouy A, Hornett EA, Dyson EA, Davies N, Roderick GK, Wedell N, Hurst GD (2009) The joint evolutionary histories of Wolbachia and mitochondria in Hypolimnas bolina. BMC Evol Biol 9: 64.https://doi.org/10.1186/1471-2148-9-64
- White JA, Kelly SE, Perlman SJ, Hunter MS (2009) Cytoplasmic incompatibility in the parasitic wasp Encarsia inaron: Disentangling the roles of Cardinium and Wolbachia symbionts. Heredity 102: 483–489.https://doi.org/10.1038/hdy.2009.5
- Li S, Xu X, De Mandal S, Shakeel M, Hua Y, Shoukat RF, Fu D, Jin F (2021) Gut microbiota mediate Plutella xylostella susceptibility to Bt Cry1Ac protoxin is associated with host immune response. Environmental Pollution 271: 116271.https://doi.org/10.1016/j.envpol.2020.116271
- Sorokan’ A, Benkovskaya G, Blagova D, Maksimova T, Maksimov I (2018) Defense Responses and Changes in Symbiotic Gut Microflora in the Colorado Potato Beetle Leptinotarsa decemlineata under the Effect of Endophytic Bacteria from the Genus Bacillus. J Evol Biochem Physiol 54: 300–307.https://doi.org/10.1134/S0022093018040063
- Gujar GT, Mittal A, Kumari A, Kalia V (2004) Host crop influence on the susceptibility of the American bollworm, Helicoverpa armigera, to Bacillus thuringiensis ssp. kurstaki HD-73. Entomol Exp Appl 113:165–172.https://doi.org/10.1111/j.0013-8703.2004.00223.x
- Tu XY, Xia QW, Chen C, He HM, Xue F Sen (2015) Geographic variation in developmental duration of the Asian corn borer, Ostrinia furnacalis (Guené) (Lepidoptera: Crambidae) in China. Acta Ecologica Sinica 35(2): 324–332.https://doi.org/10.5846/stxb201303260512
- Xia X, Sun B, Gurr GM, Vasseur L, Xue M, You M (2018) Gut microbiota mediate insecticide resistance in the diamondback moth, Plutella xylostella (L.). Front Microbiol 9: 25.https://doi.org/10.3389/fmicb.2018.00025
- Benkovskaya G, Dubovskiy I (2020) Spreading of colorado potato beetle resistance to chemical insecticides in siberia and history of its settling in the secondary area. Plant Protection News 103: 37–39. https://doi.org/10.31993/2308-6459-2020-103-1-37-39
- Yang F, Crossley MS, Schrader L, Dubovskiy IM, Wei S, Zhang R (2022) Polygenic adaptation contributes to the invasive success of the Colorado potato beetle. Mol Ecol 31: 5568–5580.https://doi.org/10.1111/mec.16666
- Shatalova EI, Grizanova EV, Dubovskiy IM (2022) The Effect of Silicon Dioxide Nanoparticles Combined with Entomopathogenic Bacteria or Fungus on the Survival of Colorado Potato Beetle and Cabbage Beetles. Nanomaterials 12(9): 1558.https://doi.org/10.3390/nano12091558
- Ashida M, Söderhäll K (1984) The prophenoloxidase activating system in crayfish. Comparative Biochemistry and Physiology -- Part B: Ashida, M., & Söderhäll, K. (1984). The prophenoloxidase activating system in crayfish. Comp Biochem Physiol Part B: Comp Biochem 77(1): 21–26. https://doi.org/10.1016/0305-0491(84)90217-7
- Wojda I, Kowalski P, Jakubowicz T (2004) JNK MAP kinase is involved in the humoral immune response of the greater wax moth larvae Galleria mellonella. Arch Insect Biochem Physiol 56(4): 143–154.https://doi.org/10.1002/arch.20001
- Wang Y, Oberley LW, Murhammer DW (2001) Antioxidant defense systems of two lipidopteran insect cell lines. Free Radic Biol Med 30(11): 1254–1262.https://doi.org/10.1016/S0891-5849(01)00520-2
- Prabhakaran SK, Kamble ST (1993) Activity and electrophoretic characterization of esterases in insecticide-resistant and susceptible strains of German cockroach (Dictyoptera: Blattellidae). J Econ Entomol 86(4): 1009–1013.https://doi.org/10.1093/jee/86.4.1009
- Dubovskiy IM, Grizanova EV, Ershova NS, Rantala MJ, Glupov VV (2011) The effects of dietary nickel on the detoxification enzymes, innate immunity and resistance to the fungus Beauveria bassiana in the larvae of the greater wax moth Galleria mellonella. Chemosphere 85(1):92–96. https://doi.org/10.1016/j.chemosphere.2011.05.039
- Habig WH, Pabst MJ, Jakoby WB (1974) Glutathione S transferases. The first enzymatic step in mercapturic acid formation. Journal of Biological Chemistry 249(22):7130–7139.
- Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:.https://doi.org/10.1016/0003-2697(76)90527-3
- Dubovskiy IM, Martemyanov VV, Vorontsova YL, Rantala MJ, Gryzanova EV, Glupov VV (2008) Effect of bacterial infection on antioxidant activity and lipid peroxidation in the midgut of Galleria mellonella L. larvae (Lepidoptera, Pyralidae). Com Biochem Physiol - C Toxicol Pharmacol 148(1):1–5. https://doi.org/10.1016/j.cbpc.2008.02.003
- Grizanova EV, Krytsyna TI, Kalmykova GV, Sokolova E, Alikina T, Kabilov M, Coates CJ, Dubovskiy IM (2023) Virulent and necrotrophic strategies of Bacillus thuringiensis in susceptible and resistant insects, Galleria mellonella. Microb Pathog 175: 105958. https://doi.org/10.1016/j.micpath.2022.105958
- Fadrosh DW, Ma B, Gajer P, Sengamalay N, Ott S, Brotman RM, Ravel J (2014) An improved dual-indexing approach for multiplexed 16S rRNA gene sequencing on the Illumina MiSeq platform. Microbiome 2(1):6.https://doi.org/10.1186/2049-2618-2-6
- Lysko SB, Baturina OA, Naumova NB, Lescheva NA, Pleshakova VI, Kabilov MR (2021) No-Antibiotic-Pectin-Based Treatment Differently Modified Cloaca Bacteriobiome of Male and Female Broiler Chickens. Agriculture 12:24.https://doi.org/10.3390/agriculture12010024
- Edgar RC (2013) UPARSE: Highly accurate OTU sequences from microbial amplicon reads. Nat Methods 10(10):996–998.https://doi.org/10.1038/nmeth.2604
- Edgar RC (2010) Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26:2460–2461.https://doi.org/10.1093/bioinformatics/btq461
- Edgar R (2016) SINTAX: a simple non-Bayesian taxonomy classifier for 16S and ITS sequences. bioRxiv 074161.https://doi.org/10.1101/074161
- Wang Q, Garrity GM, Tiedje JM, Cole JR (2007) Naïve Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol 73(16):5261–5267.https://doi.org/10.1128/AEM.00062-07
- Dubovskiy IM, Whitten MMA, Kryukov VY, Yaroslavtseva ON, Grizanova EV, Greig C, Mukherjee K, Vilcinskas A, Mitkovets PV, Glupov VV, Butt TM (2013) More than a colour change: Insect melanism, disease resistance and fecundity. Proc Royal Soc B: Biol Sci 280(1763):20130584. https://doi.org/10.1098/rspb.2013.0584
- Safi NHZ, Ahmadi AA, Nahzat S, Ziapour SP, Nikookar SH, Fazeli-Dinan M, Enayati A, Hemingway J (2017) Evidence of metabolic mechanisms playing a role in multiple insecticides resistance in Anopheles stephensi populations from Afghanistan. Malar J 16: 100.https://doi.org/10.1186/s12936-017-1744-9
- Sayani Z, Mikani A, Mosallanejad H (2019) Biochemical Resistance Mechanisms to Fenvalerate in Plutella xylostella (Lepidoptera: Plutellidae). J Econ Entomol 112(3):1372–1377.https://doi.org/10.1093/jee/toz025
- Akiner MM (2014) [Malathion and propoxur resistance in Turkish populations of the Anopheles maculipennis Meigen (Diptera: Culicidae) and relation to the insensitive acetylcholinesterase]. Türkiye parazitolojii dergisi / Türkiye Parazitoloji Derneǧi = Acta parasitologica Turcica / Turkish Society for Parasitol 38:111–115.https://doi.org/10.5152/tpd.2014.3388
- Moustafa MAM, Moteleb RIA, Ghoneim YF, Hafez SS, Ali RE, Eweis EEA, Hassan NN (2023) Monitoring Resistance and Biochemical Studies of Three Egyptian Field Strains of Spodoptera littoralis (Lepidoptera: Noctuidae) to Six Insecticides. Toxics 11(3):211. https://doi.org/10.3390/toxics11030211
- Yang XQ, Zhang YL (2015) Investigation of insecticide-resistance status of Cydia pomonella in Chinese populations. Bull Entomol Res 105(3): 316–325.https://doi.org/10.1017/S0007485315000115
- Kryukov VY, Kabilov MR, Smirnova N, Tomilova OG, Tyurin MV, Akhanaev YB, Polenogova OV, Danilov VP, Zhangissina SK, Alikina T, Yaroslavtseva ON, Glupov VV (2019) Bacterial decomposition of insects post-Metarhizium infection: Possible influence on plant growth. Fungal Biology 123(12): 927–935.https://doi.org/10.1016/j.funbio.2019.09.012
- Hackett KJ, Whitcomb RF, Clark TB, Henegar RB, Lynn DE, Wagner AG, Tully JG, Gasparich GE, Rose DL, Carle P, Bové JM, Konai M, Clark EA, Adams JR, Williamson DL (1996) Spiroplasma leptinotarsae sp. nov., a Mollicute uniquely adapted to its host, the Colorado potato beetle, Leptinotarsa decemlineata (Coleoptera: Chrysomelidae). Int J Systematic Bacteriol 46:906–911.https://doi.org/10.1099/00207713-46-4-906
- Goretty CCM, Loera-Muro A, Thelma C, Julian AMC, David MSM, Aarón B (2019) Analysis of the bacterial communities and endosymbionts of natural populations of Bemisia tabaci in several crop fields from Mexico semi-arid zone. Ann Microbiol 69:.https://doi.org/10.1007/s13213-019-01483-6
- Toju H, Fukatsu T (2011) Diversity and infection prevalence of endosymbionts in natural populations of the chestnut weevil: Relevance of local climate and host plants. Mol Ecol 20(4): 853–868.https://doi.org/10.1111/j.1365-294X.2010.04980.x
- Broderick NA, Raffa KF, Handelsman J (2006) Midgut bacteria required for Bacillus thuringiensis insecticidal activity. Proc Natl Acad Sci U S A 103(41): 15196–15199.https://doi.org/10.1073/pnas.0604865103
- Kikuchi Y, Hayatsu M, Hosokawa T, Nagayama A, Tago K, Fukatsu T (2012) Symbiont-mediated insecticide resistance. Proc Natl Acad Sci U S A 109(22): 8618–8622.https://doi.org/10.1073/pnas.1200231109
- Engel P, Moran NA (2013) The gut microbiota of insects - diversity in structure and function. FEMS Microbiol Rev 37(5):699–735.https://doi.org/10.1111/1574-6976.12025
- Xia X, Zheng D, Zhong H, Qin B, Gurr GM, Vasseur L, Lin H, Bai J, He W, You M (2013) DNA Sequencing Reveals the Midgut Microbiota of Diamondback Moth, Plutella xylostella (L.) and a Possible Relationship with Insecticide Resistance. PLoS One 8. e68852.https://doi.org/10.1371/journal.pone.0068852
- Kikuchi Y, Yumoto I (2013) Efficient colonization of the bean bug Riptortus pedestris by an environmentally transmitted Burkholderia symbiont. Appl Environ Microbiol 79(6):2088–2091.https://doi.org/10.1128/AEM.03299-12
- Cheng D, Guo Z, Riegler M, Xi Z, Liang G, Xu Y (2017) Gut symbiont enhances insecticide resistance in a significant pest, the oriental fruit fly Bactrocera dorsalis (Hendel). Microbiome 5:13. https://doi.org/10.1186/s40168-017-0236-z
- Hrdina A, Serra Canales M, Arias-Rojas A, Frahm D, Iatsenko I (2024) The endosymbiont Spiroplasma poulsonii increases Drosophila melanogaster resistance to pathogens by enhancing iron sequestration and melanization. mBio 14;15(8):e0093624. https://doi.org/10.1128/mbio.00936-24
- Upfold J, Rejasse A, Nielsen-Leroux C, Jensen AB, Sanchis-Borja V (2023) The immunostimulatory role of an Enterococcus-dominated gut microbiota in host protection against bacterial and fungal pathogens in Galleria mellonella larvae. Front Insect Sci 3:1260333. https://doi.org/10.3389/finsc.2023.1260333
- Hoang KL, King KC (2022) Symbiont-mediated immune priming in animals through an evolutionary lens. Microbiology (United Kingdom) 168(4). https://doi.org/10.1099/mic.0.001181
- Hamilton PT, Leong JS, Koop BF, Perlman SJ (2014) Transcriptional responses in a Drosophila defensive symbiosis. Mol Ecol 23(6): 1558–1570.https://doi.org/10.1111/mec.12603
- Masson F, Rommelaere S, Marra A, Schüpfer F, Lemaitre B (2021) Dual proteomics of Drosophila melanogaster hemolymph infected with the heritable endosymbiont Spiroplasma poulsonii. PLoS One 16(4):e0250524. https://doi.org/10.1371/journal.pone.0250524
- Jaenike J, Unckless R, Cockburn SN, Boelio LM, Perlman SJ (2010) Adaptation via symbiosis: Recent spread of a drosophila defensive symbiont. Science 329(5988):212–215.https://doi.org/10.1126/science.1188235
- Chertkova EA, Grizanova EV, Dubovskiy IM (2018) Bacterial and fungal infections induce bursts of dopamine in the haemolymph of the Colorado potato beetle Leptinotarsa decemlineata and greater wax moth Galleria mellonella. J Invertebr Pathol 153:203–206.https://doi.org/10.1016/j.jip.2018.02.020
- Grizanova EV, Dubovskiy IM, Whitten MMA, Glupov VV (2014) Contributions of cellular and humoral immunity of Galleria mellonella larvae in defence against oral infection by Bacillus thuringiensis. J Invertebr Pathol 119:40–46. https://doi.org/10.1016/j.jip.2014.04.003
- Zwick RK, Ohlstein B, Klein OD (2019) Intestinal renewal across the animal kingdom: comparing stem cell activity in mouse and Drosophila. Am J Physiol-Gastrointestinal Liver Physiol 316(3): G313–G322.https://doi.org/10.1152/ajpgi.00353.2018
- Wu K, Yang B, Huang W, Dobens L, Song H, Ling E (2016) Gut immunity in Lepidopteran insects. Dev Comp Immunol 64: 65–74. https://doi.org/10.1016/j.dci.2016.02.010
- Terra WR, Dias RO, Oliveira PL, Ferreira C, Venancio TM (2018) Transcriptomic analyses uncover emerging roles of mucins, lysosome/secretory addressing and detoxification pathways in insect midguts. Curr Opin Insect Sci 29: 34–40. https://doi.org/10.1016/j.cois.2018.05.015
- St Leger RJ, Cooper RM, Charnley AK (1988) The effect of melanization of Manduca sexta cuticle on growth and infection by Metarhizium anisopliae. J Invertebr Pathol 52: 459–470.https://doi.org/10.1016/0022-2011(88)90059-6
- Hajek AE, St Leger RJ (1994) Interactions Between Fungal Pathogens and Insect Hosts. Ann Rev Entomol 39: 293–322.https://doi.org/10.1146/annurev.ento.39.1.293
- Rahman MM, Roberts HLS, Sarjan M, Asgarit S, Schmidt O (2004) Induction and transmission of Bacillus thuringiensis tolerance in the flour moth Ephestia kuehniella. Proc Natl Acad Sci U S A 101(9): 2696–2699.https://doi.org/10.1073/pnas.0306669101
- Ayres JS, Schneider DS (2008) A signaling protease required for melanization in Drosophila affects resistance and tolerance of infections. PLoS Biol 6(12):2764–2773.https://doi.org/10.1371/journal.pbio.0060305
- Khan MM, Kaleem-Ullah RM, Siddiqui JA, Ali S (2020) Insecticide Resistance and Detoxification Enzymes Activity in Nilaparvata lugens Stål Against Neonicotinoids. J Agricult Sci 12: 24–36. https://doi.org/10.5539/jas.v12n5p24
- Siddiqui JA, Fan R, Naz H, Bamisile BS, Hafeez M, Ghani MI, Wei Y, Xu Y, Chen X (2023) Insights into insecticide-resistance mechanisms in invasive species: Challenges and control strategies. Front Physiol 13: 1112278.https://doi.org/10.3389/fphys.2022.1112278
- Gunning RV, Dang HT, Kemp FC, Nicholson IC, Moores GD (2005) New resistance mechanism in Helicoverpa armigera threatens transgenic crops expressing Bacillus thuringiensis Cry1Ac toxin. Appl Environ Microbiol 71(5): 2558–2563.https://doi.org/10.1128/AEM.71.5.2558-2563.2005
- Grizanova EV, Semenova AD, Komarov DA, Chertkova EA, Slepneva IA, Dubovskiy IM (2018) Maintenance of redox balance by antioxidants in hemolymph of the greater wax moth Galleria mellonella larvae during encapsulation response. Arch Insect Biochem Physiol 98(4): e21460.https://doi.org/10.1002/arch.21460
- Munday R, Winterbourn CC (1989) Reduced glutathione in combination with superoxide dismutase as an important biological antioxidant defence mechanism. Biochem Pharmacol 38(24): 4349–4352.https://doi.org/10.1016/0006-2952(89)90641-2
- Sies H (1991) Oxidative stress: From basic research to clinical application. Am J Med 91(3C): 31S–38S. https://doi.org/10.1016/0002-9343(91)90281-2
Дополнительные файлы
