SOME ASPECTS OF THE ENDOHEDRAL CLUSTER ORIENTATION IN THE EXOHEDRALLY FUNCTIONALIZED DySc2N@C80 AND Dy2ScN@C80 MOLECULES

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Acesso é pago ou somente para assinantes

Resumo

We present a computational study of the most energetically stable conformations and properties there of in the dysprosium endohedral compounds of the M3N@C80 type modified by exhohedral function alization. We report the most stable configurations of the endohedral cluster and demonstrate good perfor mance of the density functional theory (DFT) in combination with the large-core effective core potential (ECP) that incorporates the 4f-shell of the dysprosium ions.

Sobre autores

A. Pykhova

Lomonosov Moscow State University

Москва, Россия

S. Sudarkova

Lomonosov Moscow State University

Москва, Россия

I. Ioffe

Lomonosov Moscow State University

Email: ioffe@phys.chem.msu.ru
Москва, Россия

Bibliografia

  1. Popov A.A., Yang S., Dunsch L. // Chem. Rev. 2013. V. 113. № 8. P. 5989.
  2. Liu F., Spree L., Krylov D.S. et al. // Acc. Chem. Res. 2019. V. 52. № 10. P. 2981.
  3. Velkos G., Krylov D.S., Kirkpatrick K. et al. // Angew. Chem. Int. Ed. 2019. V. 58. № 18. C. 5891.
  4. Wang Y., Xiong J., Su J. et al. // Nanoscale. 2020. V. 12. № 20. P. 11130.
  5. Stevenson S., Rice G., Glass T. et al. // Nature. 1999. V. 401. № 6748. C. 55.
  6. Popov A.A., Pykhova A.D., Ioffe I.N. et al. // J. Am. Chem. Soc. 2014. V. 136. № 38. P. 13436.
  7. Pykhova A.D., Semivrazhskaya O.O., Samoylova N.A. et al. // Dalton Trans. 2020. V. 49. № 26. P. 9137.
  8. Westerström R., Dreiser J., Piamonteze C. et al. // J. Am. Chem. Soc. 2012. V. 134. № 24. P. 9840.
  9. Westerström R., Dreiser J., Piamonteze C. et al. // Phys. Rev. B. 2014. V. 89. № 6. P. 060406(R).
  10. Vieru V., Ungur L., Chibotaru L.F. // J. Phys. Chem. Lett. 2013. V. 4. № 21. P. 3565.
  11. Khinevich V.E., Sudarkova S.M., Ioffe I.N. // Phys. Chem. Chem. Phys. 2024. V. 26. № 42. P. 26765.
  12. Granovsky A.A. // Firefly v. 8.2, http://classic.chem.msu.su/gran/firefly/index.html
  13. Schmidt M.W., Baldridge K.K., Boatz J.A. et al. // J. Comput. Chem. 1993. V. 14. № 11. P. 1347.
  14. Adamo C., Barone V. // J. Chem. Phys. 1999. V. 110. № 13. P. 6158.
  15. Granovsky A.A. // J. Chem. Phys. 2011. V. 134. № 21. P. 214113.
  16. Dolg M., Stoll H., Savin A., Preuss H. // Theor. Chim. Acta. 1989. V. 75. № 3. P. 173.
  17. Dolg M., Stoll H., Preuss H. // J. Chem. Phys. 1989. V. 90. № 3. P. 1730.
  18. Weigend F., Ahlrichs R. // Phys. Chem. Chem. Phys. 2005. V. 7. № 18. P. 3297.
  19. Goryunkov A.A., Kornienko E.S., Magdesieva T.V. et al. // Dalton Trans. 2008. № 48. C. 6886.
  20. He D., Du X., Xiao Z., Ding L. // Org. Lett. 2014. V. 16. № 2. P. 612.
  21. Aroua S., Garcia-Borras M., Bolter M.F. et al. // J. Am. Chem. Soc. 2015. V. 137. № 1. P. 58.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Russian Academy of Sciences, 2025