Influence of the method of catalyst production on the properties of synthesized carbon for electrochemical systems

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Acesso é pago ou somente para assinantes

Resumo

The results of investigation of the influence of the method of preparation on the properties of Co/Mo/MgO catalysts and carbon nanotubes (CNTs) synthesized on them by chemical vapor deposition are presented. The catalysts were prepared by modified precipitation method and glycine-nitrate method. The structure and properties of CNTs were studied by low-temperature nitrogen adsorption, scanning and transmission electron microscopy, and Raman spectroscopy. The effect of the addition of synthesized CNTs on the conductivity of NMC811 (LiNi0.8Mn0.1Co0.1O2) based cathode material was investigated.

Sobre autores

K. Koval

D.I. Mendeleev Russian University of Chemical Technology

Moscow, Russia

A. Kryukov

D.I. Mendeleev Russian University of Chemical Technology

Email: kriukov.a.i@muctr.ru
Moscow, Russia

Yu. Treshkina

D.I. Mendeleev Russian University of Chemical Technology

Moscow, Russia

A. Morozov

D.I. Mendeleev Russian University of Chemical Technology

Moscow, Russia

O. Selina

D.I. Mendeleev Russian University of Chemical Technology

Moscow, Russia

V. Emets

A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences

Moscow, Russia

S. Ashikhmin

Global SO LLC

Khimki, Moscow region, Russia

I. Izvolsky

Global SO LLC

Khimki, Moscow region, Russia

A. Desyatov

D.I. Mendeleev Russian University of Chemical Technology

Moscow, Russia

Bibliografia

  1. Doustan F., Pasha M.A. // Fuller. Nanotub. Carbon Nanostructures. 2016. V. 24. № 1. P. 25.
  2. Hosseini A.A., Doustan F., Akbarzadeh Pasha M. // J. Nanostruct. 2013. V. 3. № 3. P. 333.
  3. Lobiak E.V., Shlyakhova E.V., Gusel’nikov A.V.et al. // Phys. Status Solidi B Basic Res. 2018. V. 255. № 1. P. 1700274.
  4. Zaretskiy S.N., Hong Y.K., Ha D.H. et al. // Chem. Phys. Lett. 2003. V. 372. № 1—2. P. 300.
  5. Park J.B., Choi G.S., Cho Y.S. et al. // J. Cryst. Growth. 2002. V. 244. № 2. P. 211.
  6. Awadallah A.E., Aboul-Enein A.A., Azab M.A., Abdel-Monem Y.K. // Fuller. Nanotub. Carbon Nanostructures. 2017. V. 25. № 4. P. 256.
  7. Yang L., Zhao T., Jalil A. et al. // Appl. Surf. Sci. 2023. № 637. P. 157889.
  8. Qingwen L., Hao Y., Yan C. et al. // J. Mater. Chem. 2002. V. 12. № 4. P. 1179.
  9. Li H., Shi C., Du X. et al. // Mater. Lett. 2008. V. 62. № 10—11. P. 1472.
  10. Lee C.J., Park J., Kim J.M. et al. // Chem. Phys. Lett. 2000. V. 327. № 5—6. P. 277.
  11. Maruyama T., Kondo H., Ghosh R. et al. // Carbon. 2016. № 96. P. 6—13.
  12. Sun T., Fan G., Li F. // Ind. Eng. Chem. Res. 2013. V. 52. № 16. P. 5538.
  13. Chen D.R., Chitranshi M., Schulz M., Shanov V. // Nano Life. 2019. V. 9. № 4. P. 1930002.
  14. Kumar M., Ando Y. // J. Nanosci. Nanotechnol. 2010. V. 10. № 6. P. 3739.
  15. Pirard S.L., Douven S., Bossuot C. et al. // Carbon. 2007. V. 45. № 6. P. 1167.
  16. Lobiak E.V., Shlyakhova E.V., Bulusheva L.G. et al. // J. Alloys Compd. 2015. № 621. P. 351.
  17. Coquay P., Peigney A., De Grave E. et al. // J. Phys. Chem. B. 2005. V. 109. № 38. P. 17813.
  18. Pérez-Mendoza M., Vallés C., Maser W.K. et al. // Nanotechnology. 2005. V. 16. № 5. P. S224.
  19. Cordier A., de Resende V.G., Weibel A. et al. // J. Phys. Chem. C. 2010. V. 114. № 45. P. 19188.
  20. Jourdain V., Bichara C. // Carbon. 2013. № 58. P. 2.
  21. Kozawa A., Kiribayashi H., Ogawa S. et al. // Diam. Relat. Mater. 2016. № 63. P. 159.
  22. Xu Y., Dervishi E., Saini V. et al. // J. Mater. Chem. 2008. V. 18. № 47. P. 5738.
  23. Yu C.L., Sakthinathan S., Hwang B.Y. et al. // Int. J. Hydrogen Energy. 2020. V. 45. № 32. P. 15752.
  24. Kim J., Lee H., Lee J. et al. // Materials. 2023. V. 16. № 22. P. 7191.
  25. Ventrapragada L.K. Zhu, J., Creager, S.E. et al. // ACS omega. 2018. V. 3. № 4. P. 4502.
  26. Мацукевич И.B., Крутько Н.П., Липай Ю.В., Овсеенко Л.В. // Известия НАН Беларуси. Серия химических наук. 2020. Т. 56. № 1. С. 33.
  27. Kim K.H., Oh Y., Islam M.F. // Adv. Funct. Mater. 2013. V. 23. № 3. P. 377.
  28. Li Z., Deng L., Kinloch I.A., Young R.J. // Prog. Mater. Sci. 2023. № 135. P. 101089.
  29. Quéméré P. // J. Open Source Softw. 2024. V. 9. № 96. P. 5868.
  30. Jiang Y., Wang H., Li B., Zhang Y. // Carbon. 2016. № 107. P. 600.
  31. Gao B., Zhang Y., Zhang J.et al. // J. Phys. Chem. C. 2008. V. 112. № 22. P. 8319.
  32. Ichinose Y., Yoshida A., Horiuchi K. et al. // Nano Lett. 2019. Т. 19. № 10. P. 7370.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Russian Academy of Sciences, 2025