Synthesis OF Bi1.5CoSb1.5O7 pyrochlore under hydrothermal conditions and its catalytic properties in the CO oxidation

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The pyrochlore solid solution region in the Bi2O3–CoO–Sb2O5 system is determined. A previously unknown ternary oxide Bi3Co2/3Sb7/3O11 with cubic KSbO3 structure (sp. gr. Pn-3, a = 9.5801(1) Å, wR =0.0132) is found. An isothermal section of the system is constructed in the region of CoO-Bi3SbO7-CoSb2O6-BiSbO4 at 650°C. It is shown that cobalt state in pyrochlore crystal lattice is Co2+. For pyrochlore composition Bi1.5CoSb1.5O7, the synthetic methods under hydrothermal conditions of both without microwave-assisted treatment and with it have been developed. Based on the data of X-ray diffraction analysis, local energy-dispersive X-ray analysis, scanning microscopy and IR spectroscopy, a mechanism for the pyrochlore phase formation under hydrothermal condition is proposed. The dispersed Bi1.5CoSb1.5O7 samples (SCD = 30 nm) are synthesized and the prospects of their use as catalysts for CO oxidation are shown.

全文:

受限制的访问

作者简介

A. Egorysheva

Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences

编辑信件的主要联系方式.
Email: anna_egorysheva@rambler.ru
俄罗斯联邦, Moscow, 119991

S. Golodukhina

Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences

Email: anna_egorysheva@rambler.ru
俄罗斯联邦, Moscow, 119991

E. Liberman

D.Mendeleev University of Chemical Technology of Russia

Email: anna_egorysheva@rambler.ru
俄罗斯联邦, Moscow, 125047

L. Razvorotneva

Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences; National Research University Higher School of Economics

Email: anna_egorysheva@rambler.ru
俄罗斯联邦, Moscow, 119991; Moscow, 101000

D. Kirdyankin

Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences

Email: anna_egorysheva@rambler.ru
俄罗斯联邦, Moscow, 119991

E. Popova

Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences

Email: anna_egorysheva@rambler.ru
俄罗斯联邦, Moscow, 119991

参考

  1. Егорышева А.В., Голодухина С.В., Плукчи К.Р. и др. // Журн. неорган. химии. 2023. Т. 68. № 12. С. 1702. https://doi.org/10.31857/S0044457X23601220
  2. Gadgil M.M., Kulshreshtha S.K. // J. Mol. Catal. A: Chem. 1995. V. 95. P. 211. https://doi.org/10.1016/1381-1169(94)00027-1
  3. Carrazán S.R.G., Cadus L., Dieu P. et al. // Catal. Today. 1996. V. 32. P. 311. https://doi.org/10.1016/S0920-5861(96)00184-8
  4. Egorysheva A.V., Plukchi K.R., Golodukhina S.V. et al. // Mend. Comm. 2023. V. 33. P. 608. https://doi.org/10.1016/j.mencom.2023.09.005
  5. Эллерт О.Г., Егорышева А.В., Либерман Е.Ю. и др. // Неорган. материалы. 2019. Т. 55. № 12. С. 1335. https://doi.org/10.1134/S0002337X19120030
  6. Zhang Y.Q., Xuan Y., Qian S.S. et al. // J. Mater. Sci. 1999. V. 34. P. 4475. https://doi.org/10.1023/A:1004685104797
  7. Korf S.J., Koopmans H.J.A., Lippens B.C. et al. // J. Chem. Soc., Faraday Trans. 1. 1987. V. 83. P. 1485. https://doi.org/10.1039/F19878301485
  8. Xu J., Xi R., Xu X. et al. // J. Rare Earths. 2020. V. 38. P. 840. https://doi.org/10.1016/j.jre.2020.01.002
  9. Sellami M., Bekka A., Bettahar N. et al. // Comptes Rendus Chimie. 2009. V. 12. P. 276. https://doi.org/10.1016/j.crci.2008.01.002
  10. Simonot L., Garin F., Maire G. // Appl. Catal. B. 1997. V. 11. P. 167. https://doi.org/10.1016/S0926-3373(96)00046-X
  11. Royer S., Duprez D., Kaliaguine S. // Catal. Today. 2006. V. 112. P. 99. https://doi.org/10.1016/j.cattod.2005.11.020
  12. Miles G.C., West A.R. // J. Am. Ceram. Soc. 2006. V. 89. P. 1042. https://doi.org/10.1111/j.1551-2916.2005.00799.x
  13. Khaw C.C., Tan K.B., Lee C.K. et al. // J. Eur. Ceram. Soc. 2012. V. 32. P. 671. https://doi.org/10.1016/j.jeurceramsoc.2011.10.012
  14. Daniels L.M., Playford H.Y., Grenèche J.-M. et al. // Inorg. Chem. 2014. V. 53. P. 13197. https://doi.org/10.1021/ic502411z
  15. Egorysheva A.V., Gajtko O.M., Rudnev P.O. et al. // Eur. J. Inorg. Chem. 2016. V. 13–14. P. 2193. https://doi.org/10.1002/ejic.201501159
  16. Lomakin M.S., Proskurina O.V., Levin A.A. et al. // Russ. J. Inorg. Chem. 2022. V. 67. P. 820. https://doi.org/10.1134/S0036023622060134
  17. Saiduzzaman M., Takei T., Kumada N. // Inorg. Chem. Frontiers. 2021. V. 8. P. 2918. https://doi.org/10.1039/d1qi00337b
  18. Elovikov D.P., Tomkovich M.V., Levin A.A. et al. // Russ. J. Inorg. Chem. 2022. V. 67. P. 850. https://doi.org/10.1134/S0036023622060067
  19. Дроздов А.А., Зломанов В.П., Мазо Г.Н., Спиридонов Ф.М. Неорганическая химия. М.: Академия, 2007. Т. 3.
  20. Ismunandar, Kennedy B.J., Hunter B.A. // J. Solid State Chem. 1996 V. 127. P. 178. https://doi.org/10.1006/jssc.1996.0374
  21. Ramesha K., Prakash A.S., Sathiya M. et al. // Bull. Mater. Sci. 2011. V. 34. P. 271. https://doi.org/10.1007/s12034-011-0090-8
  22. Egorysheva A.V., Ellert O.G., Zubavichus Y.V. et al. // J. Solid State Chem. 2015. V. 225. P. 97. https://doi.org/10.1016/j.jssc.2014.12.001
  23. Ливер Э. Электронная спектроскопия неорганических соединений. М.: Мир, 1987. 445 с.
  24. Minervini L., Grimes R.W., Sickafus K.E. // J.Am. Ceram. Soc. 2000. V. 83. P. 1873. https://doi.org/10.1111/j.1151-2916.2000.tb01484.x
  25. Накамото К. ИК-спектры и спектры КР неорганических и координационных соединений / Пер с англ. Христенко Л.В. под ред. Пентина Ю.А. М.: Мир, 1991. 536 с.
  26. Jana Y.M., Halder P., Ali Biswas A. et al. // Vib. Spectrosc. 2016. V. 84. P. 74. https://doi.org/10.1016/j.vibspec.2016.03.004

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Isothermal cross section of Bi2O3-CoO-Sb2O5 system at temperature 650С. P-region of the solid solution with pyrochlore structure.

下载 (222KB)
3. Fig. 2. Dependence of the lattice parameter a of pyrochlore (Bi1.5-HCo0.5+x)Co0.5Sb1.5O7-δ on x.

下载 (55KB)
4. Fig. 3. Absorption spectrum of Bi1.5CoSb1.5O7.

下载 (84KB)
5. Fig. 4. Diffractograms of samples obtained under hydrothermal conditions at different synthesis times (a). Fragments of diffractograms at large angles 2θ (b).

下载 (186KB)
6. Fig. 5. Diffractograms of samples obtained at different NaOH concentrations (a). Fragments of diffractograms at large angles 2θ (b).

下载 (184KB)
7. Fig. 6. Microphotographs of samples obtained after co-precipitation (a) and hydrothermal treatment at 200С for 1 (b), 2 (c), 4 (d), 16 (e) and 24 h (f).

下载 (1MB)
8. Fig. 7. IR spectra of samples obtained at different synthesis times under hydrothermal conditions.

下载 (153KB)
9. Fig. 8. Diffractograms of Bi1.5CoSb1.5O7 samples synthesized in hydrothermal conditions under microwave exposure for different times (a). Microphotograph of the sample synthesized under hydrothermal-microwave conditions at 220С for 3 h (b).

下载 (316KB)
10. Fig. 9. Temperature dependence of CO conversion (α, %) in the presence of Bi1.5CoSb1.5O7 obtained by the hydrothermal method. Roman numerals indicate the cycle number.

下载 (64KB)

版权所有 © Russian Academy of Sciences, 2024