Study of the Reversible Hawthorne Rearrangement between Isomeric Forms of the Octadecahydroeicosaborate Anion using Dynamic 11B NMR Spectroscopy
- Autores: Dontsova O.S.1, Matveev E.Y.1,2, Eshtukova-Shcheglova E.A.1, Nichugovskii A.I.1, Golubev A.V.2, Privalov V.I.2, Avdeeva V.V.2, Malinina E.A.2, Zhizhin K.Y.1,2, Kuznetsov N.T.1,2
-
Afiliações:
- MIREA — Russian Technological University, Institute of Fine Chemical Technologies named after M.V. Lomonosov
- Kurnakov Institute of General and Inorganic Chemistry
- Edição: Volume 69, Nº 6 (2024)
- Páginas: 816-821
- Seção: СИНТЕЗ И СВОЙСТВА НЕОРГАНИЧЕСКИХ СОЕДИНЕНИЙ
- URL: https://gynecology.orscience.ru/0044-457X/article/view/666491
- DOI: https://doi.org/10.31857/S0044457X24060033
- EDN: https://elibrary.ru/XTQACF
- ID: 666491
Citar
Resumo
The process of rearrangement of the octadecahydroeicosaborate anion [trans-B20H18]2– → [iso-B20H18]2– in various solvents (acetonitrile, DMF, DMSO) under UV irradiation in dynamics has been studied using 11B NMR spectroscopy. It has been shown that the time of complete isomeric transition depends on the solvent used. In acetonitrile, complete conversion of the [trans-B20H18]2– anion to the iso form is achieved in 1 h; in DMF, the process takes about 2 h; in DMSO, about 3 h. The reverse process of rearrangement of the macropolyhedral borohydride anion [iso-B20H18]2– → [trans-B20H18]2– has been studied under the influence of temperature in DMF and it has been shown that an increase in the reaction time and an increase in the temperature of the reaction solution is accompanied by degradation of the boron cluster.
Palavras-chave
Texto integral

Sobre autores
O. Dontsova
MIREA — Russian Technological University, Institute of Fine Chemical Technologies named after M.V. Lomonosov
Email: avdeeva.varvara@mail.ru
Rússia, Moscow, 119571
E. Matveev
MIREA — Russian Technological University, Institute of Fine Chemical Technologies named after M.V. Lomonosov; Kurnakov Institute of General and Inorganic Chemistry
Email: avdeeva.varvara@mail.ru
Rússia, Moscow, 119571; Moscow, 119991
E. Eshtukova-Shcheglova
MIREA — Russian Technological University, Institute of Fine Chemical Technologies named after M.V. Lomonosov
Email: avdeeva.varvara@mail.ru
Rússia, Moscow, 119571
A. Nichugovskii
MIREA — Russian Technological University, Institute of Fine Chemical Technologies named after M.V. Lomonosov
Email: avdeeva.varvara@mail.ru
Rússia, Moscow, 119571
A. Golubev
Kurnakov Institute of General and Inorganic Chemistry
Email: avdeeva.varvara@mail.ru
Rússia, Moscow, 119991
V. Privalov
Kurnakov Institute of General and Inorganic Chemistry
Email: avdeeva.varvara@mail.ru
Rússia, Moscow, 119991
V. Avdeeva
Kurnakov Institute of General and Inorganic Chemistry
Autor responsável pela correspondência
Email: avdeeva.varvara@mail.ru
Rússia, Moscow, 119991
E. Malinina
Kurnakov Institute of General and Inorganic Chemistry
Email: avdeeva.varvara@mail.ru
Rússia, Moscow, 119991
K. Zhizhin
MIREA — Russian Technological University, Institute of Fine Chemical Technologies named after M.V. Lomonosov; Kurnakov Institute of General and Inorganic Chemistry
Email: avdeeva.varvara@mail.ru
Rússia, Moscow, 119571; Moscow, 119991
N. Kuznetsov
MIREA — Russian Technological University, Institute of Fine Chemical Technologies named after M.V. Lomonosov; Kurnakov Institute of General and Inorganic Chemistry
Email: avdeeva.varvara@mail.ru
Rússia, Moscow, 119571; Moscow, 119991
Bibliografia
- Chamberland B.L., Muetterties E.L. // Inorg. Chem. 1964. V. 3. P. 1450. https://doi.org/10.1021/ic50020a025
- Hawthorne M.F., Pilling R.L. // J. Am. Chem. Soc. 1966. V. 88. P. 3873. https://doi.org/10.1021/ja00968a044
- Hawthorne M.F., Shelly K., Li F. // Chem. Commun. 2002. P. 547. https://doi.org/10.1039/B110076A
- Curtis Z.B., Young C., Dickerson R., Kaczmarczyk A. // Inorg. Chem. 1974. V. 13. P. 1760. https://doi.org/10.1021/ic50137a046
- Voinova V.V., Klyukin I.N., Novikov A.S. et al. // Russ. J. Inorg. Chem. 2021. V. 66. P. 295. https://doi.org/10.1134/S0036023621030190
- Francés-Monerris A., Holub J., Roca-Sanjuán D. et al. // Phys. Chem. Lett. 2019. V. 10. P. 6202. https://doi.org/10.1021/acs.jpclett.9b02290
- Kaczmarczyk A., Dobrott R.D., Lipscomb W.N. // Proc. Nat. Acad. Sci. USA. 1962. V. 48. P. 729.
- Hawthorne M.F., Pilling R.L., Stokely P.F., Garrett P.M. // J. Am. Chem. Soc. 1963. V. 85. P. 3704.
- Li F., Shelly K., Knobler C.B., Hawthorne M.F. // Angew. Chem. Int. Ed. 1998. V. 37. P. 1868. https://doi.org/10.1002/(SICI)1521-3773(19980803) 37:13/14<1868::AID-ANIE1868>3.0.CO;2-Z
- Avdeeva V.V., Buzin M.I., Dmitrienko A.O. et al. // Chem. Eur. J. 2017. V. 23. P. 16819. https://doi.org/10.1002/chem.201703285.
- Avdeeva V.V., Malinina E.A., Zhizhin K.Y. et al. // J. Struct. Chem. 2019. V. 60. P. 692. https://doi.org/10.1134/S0022476619050020
- Avdeeva V.V., Malinina E.A., Kuznetsov N.T. // Russ. J. Inorg. Chem. 2020. V. 65. P. 335. https://doi.org/10.1134/S003602362003002X
- Avdeeva V.V., Buzin M.I., Malinina E.A. et al. // Cryst. Eng. Comm. 2015. V. 17. P. 8870. https://doi.org/10.1039/C5CE00859J
- Avdeeva V.V., Kubasov A.S., Golubev A.V. et al. // Russ. J. Inorg. Chem. 2023. V. 68. P. 1209. https://doi.org/10.1134/S0036023623601502
- Li F., Shelly K., Knobler C.B., Hawthorne M.F. // Angew. Chem. Int. Ed. 1998. V. 37. P. 1865.
- Bernhardt E., Brauer D.J., Finze M., Willner H. // Angew. Chem. Int. Ed. 2007. V. 46. P. 2927. https://doi.org/10.1002/anie.200604077
- Hawthorne M.F., Pilling R.L., Garrett P.M. // J. Am. Chem. Soc. 1965. V. 87. P. 4740. https://doi.org/10.1021/ja00949a013
- Georgiev E.M., Shelly K., Feakes D.A. et al. // Inorg. Chem. 1996. V. 35. P. 5412. https://doi.org/10.1021/ic960171y
- Li F., Shelly K., Kane R.R. et al. // Angew. Chem. Int. Ed. 1996. V. 35. P. 2646. https://doi.org/10.1002/anie.199626461
- Montalvo S.J., Hudnall T.W., Feakes D.A. // J. Organomet. Chem. 2015. V. 798. P. 141. https://doi.org/10.1016/j.jorganchem.2015.05.064
- Smits J.P., Mustachio N., Newell B., Feakes D.A. // Inorg. Chem. 2012. V. 51. P. 8468. https://doi.org/10.1021/ic301044m
- Feakes D.A., Shelly K., Knobler C.B., Hawthorne M.F. // Proc. Nati. Acad. Sci. USA. 1994. V. 91. P. 3029. https://doi.org/10.1073/pnas.91.8.3029
- Feakes D.A., Waller R.C., Hathaway D.K., Morton V.S. // Proc. Nati. Acad. Sci. USA. 1999. V. 96. P. 6406. https://doi.org/10.1073/pnas.96.11.6406
- Shelly K., Feakes D.A., Hawthorne M.F. et al. // Proc. Nati. Acad. Sci. USA. 1992. V. 89. P. 9039. https://doi.org/10.1073/pnas.89.19.9039
- Waller R.C., Booth R.E., Feakes D.A. // J. Inorg. Biochem. 2013. V. 124. P. 11. https://doi.org/10.1016/j.jinorgbio.2013.03.007
- Avdeeva V.V., Kubasov A.S., Korolenko S.E. et al. // Russ. J. Inorg. Chem. 2022. V. 67. P. 1169. https://doi.org/10.1134/S0036023622080022
- Avdeeva V.V., Kubasov A.S., Nikiforova S.E. et al. // Russ. J. Inorg. Chem. 2023. V.68. P. 1406. https://doi.org/10.1134/S0036023623601794
- Il’inchik E.A., Polyanskaya T.M., Drozdova M.K. et al. // Russ. J. Gen. Chem. 2005. V. 75. P. 1545. https://doi.org/10.1007/s11176-005-0464-y
- Avdeeva V.V., Kubasov A.S., Korolenko S.E. et al. // Polyhedron. 2022. V. 217. P. 115740. https://doi.org/10.1016/j.poly.2022.115740
- Avdeeva V.V., Privalov V.I., Kubasov A.S. et al. // Inorg. Chim. Acta. 2023. V. 555. P. 121564. https://doi.org/10.1016/j.ica.2023.121564
- Miller H.C., Miller N.E., Muetterties E.L. // J. Am. Chem. Soc. 1963. V. 85. P. 3885. https://doi.org/10.1021/ja00906a033
- Marcus Y. // J. Phys. Chem. 1987. V. 91. P. 4422. https://doi.org/10.1016/S0167-7322(97)00090-1
- Gutmann V. // Coord. Chem. Rev. 1976. V. 18. P. 225. https://doi.org/10.1016/S0010-8545(00)82045-7
- Zhang J., Zhang M., Zhao Y. et al. // J. Comput. Chem. 2006. V. 27. P. 1817. https://doi.org/10.1002/jcc.20511
- Kubasov A.S., Novikov I.V., Starodubets P.A. et al. // Russ. J. Inorg. Chem. 2022. V. 67. P. 984. https://doi.org/10.1134/S0036023622070130
- Avdeeva V.V., Malinina E.A., Vologzhanina A.V. et al. // Inorg. Chim. Acta. 2020. V. 509. P. 119693.
Arquivos suplementares
