Metal-organic framework based on nickel, L-tryptophan and 1,2-bis(4-pyridyl)ethylene, consolidated on a track-etched membrane

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Рұқсат ақылы немесе тек жазылушылар үшін

Аннотация

An approach to the functionalization of track-etched membranes (TM) by metal-organic framework consisting of nickel, L-tryptophan, and 1,2-bis(4-pyridyl)ethylene (Ni-MOF) was developed. The effect of TM surface charge on the Ni-MOF self-assembly was studied. It was established that the microstructure of Ni-MOF does not depend on the method of TM modification. It was shown that the Ni-MOF self-assembly on TM modified with chitosan nanofibers is the most promising approach to the creation of a composite of TM and Ni-MOF, because the performance of the membrane do not reduce. Using scanning electron microscopy, X-ray diffraction analysis, X-ray photoelectron spectroscopy and IR spectroscopy it was shown that the composition and structure of free Ni-MOF (in powder form) and Ni-MOF in the consolidated material are identical. X-ray photoelectron spectra of Ni-MOF powders after its contact with solutions of Cd, Cu, Cs salts and adsorption kinetics study of Cd, Li, Ag, Zn, Mg, Li ions showed that Ni-MOF can be a potential sorbent of metal ions.

Толық мәтін

Рұқсат жабық

Авторлар туралы

O. Ponomareva

Joint Institute for Nuclear Research; Dubna State University

Хат алмасуға жауапты Автор.
Email: oyuivanshina@mail.ru
Ресей, 6 Joliot-Curie St, Dubna, 141980; 19 Universitetskaya St, Dubna, 141982

N. Drozhzhin

Joint Institute for Nuclear Research; Dubna State University

Email: oyuivanshina@mail.ru
Ресей, 6 Joliot-Curie St, Dubna, 141980; 19 Universitetskaya St, Dubna, 141982

I. Vinogradov

Joint Institute for Nuclear Research; Dubna State University

Email: oyuivanshina@mail.ru
Ресей, 6 Joliot-Curie St, Dubna, 141980; 19 Universitetskaya St, Dubna, 141982

T. Vershinina

Joint Institute for Nuclear Research; Dubna State University

Email: oyuivanshina@mail.ru
Ресей, 6 Joliot-Curie St, Dubna, 141980; 19 Universitetskaya St, Dubna, 141982

V. Altynov

Joint Institute for Nuclear Research

Email: oyuivanshina@mail.ru
Ресей, 6 Joliot-Curie St, Dubna, 141980

I. Zuba

Institute of Nuclear Chemistry and Technology

Email: oyuivanshina@mail.ru
Польша, Dorodna 16, Warsaw, 03-195

A. Nechaev

Joint Institute for Nuclear Research; Dubna State University

Email: oyuivanshina@mail.ru
Ресей, 6 Joliot-Curie St, Dubna, 141980; 19 Universitetskaya St, Dubna, 141982

A. Pawlukojć

Institute of Nuclear Chemistry and Technology

Email: oyuivanshina@mail.ru
Польша, Dorodna 16, Warsaw, 03-195

Әдебиет тізімі

  1. Rocio-Bautista P., Gonzalez-Hernandez P., Pino V. et al. // TrAC, Trends Anal. Chem. 2017. V. 90. P. 114. https://doi.org/10.1016/j.trac.2017.03.002
  2. Князева М.К., Соловцова О.В., Цивадзе А.Ю. и др. // Журн. неорган. химии. 2019. Т. 64. № 12. С. 1271. https://doi.org/10.1134/S0044457X19120067
  3. Murray L.J., Dinca M., Long J.R. // Chem. Soc. Rev. 2009. V. 38. P. 1294. https://doi.org/10.1039/b802256a
  4. Li J.-R., Kuppler R.J., Zhou H.-C. // Chem. Soc. Rev. 2009. V. 38. P. 1477. https://doi.org/10.1039/b802426j
  5. Manousi M., Giannakoudakis D.A., Rosenberg E. et al. // Molecules. 2019. V. 24. P. 4605. https://doi.org/10.3390/molecules24244605
  6. Safaei M., Foroughi M.M., Ebrahimpoor N. et al. // TrAC, Trends Anal. Chem. 2019. V. 118. P. 401. https://doi.org/10.1016/j.trac.2019.06.007
  7. Kang H.X., Fu Y.Q., Xin L.Y. et al. // Russ. J. Gen. Chem. 2020. V. 90. № 12. P. 2365. https://doi.org/10.1134/S107036322012021X
  8. Юткин М.П., Дыбцев Д.Н., Федин В.П. // Успехи химии. 2011. Т. 80. № 11. С. 1061.
  9. Zhu H., Liu D. // J. Mater. Chem. A. 2019. V. 7. P. 21004. https://doi.org/10.1039/C9TA05383B
  10. Xu X., Hartanto Yu., Zheng J. et al. // Membranes. 2022. V. 12. P. 1205. https://doi.org/10.3390/membranes12121205
  11. Hyuk Taek Kwon, Hae-Kwon Jeong // J. Am. Chem. Soc. 2013. V. 135. 29. P. 10763. https://doi.org/10.1021/ja403849c
  12. Виноградов И.И., Петрик Л., Серпионов Г.В. и др. // Мембраны и мембранные технологии. 2021. Т. 11. № 6. С. 447.
  13. Виноградов И.И., Андреев Е.В., Юшин Н.С. и др. // Теоретические основы химической технологии. 2023. Т. 57. № 4. С. 479. https://doi.org/10.31857/S0040357123040176
  14. Efome J.E., Rana D., Matsuura T. et al. // J. Mater. Chem. A. 2018. V. 6. P. 455. https://doi.org/10.1039/c7ta10428f
  15. Wahiduzzaman, Allmond K., Stone J. et al. // Nanoscale Res. Lett. 2017. V. 12. Art. 6. https://doi.org/10.1186/s11671-016-1798-6
  16. Lv L., Han X., Mu M. et al. // J. Membr. Sci. 2021. V. 622. P. 119049. https://doi.org/10.1016/j.memsci.2021.119049
  17. Arbulu R.C., Jiang Y.-B., Peterson E.J. et al. // Angew. Chem. Int. Ed. 2018. V. 57. P. 5813. https://doi.org/10.1002/anie.201802694
  18. Yu B., Ye G., Chen J. et al. // Environ. Pollut. 2019. V. 253. P. 39. https://doi.org/10.1016/j.envpol.2019.06.114
  19. Caddeo F., Vogt R., Weil D. et al. // ACS Appl. Mater. Interfaces. 2019. V. 11. P. 25378 https://doi.org/10.1021/acsami.9b04449
  20. Ivanshina O.Yu., Zuba I., Sumnikov S.V. et al. // AIP Conf. Proc. 2021. V. 2377. P. 020001. https://doi.org/10.1063/5.0063607
  21. Zuba I., Zuba M., Piotrowski M. et al. // Appl. Radiat. Isot. 2020. V. 162. P. 109176. https://doi.org/10.1016/j.apradiso.2020.109176
  22. Deleu W.P.R., Stassen I., Jonckheere D. et al. // J. Mater. Chem. A. 2016. V. 4. № 24. P. 9519. https://doi.org/10.1039/C6TA02381A
  23. Kristavchuk O.V., Nikiforov I.V., Kukushkin V.I. et al. // Colloid J. 2017. V. 79. № 5. P. 637. https://doi.org/10.1134/S1061933X17050088
  24. Березкин В.В., Васильев А.Б., Цыганова Т.В. и др. // Мембраны. 2008. Т. 4. № 40. С. 3
  25. Lutterotti L., Matthies S., Wenk H. // IUCr: Newsletter of the CPD. 1999. V. 21. P. 14.
  26. Cardenas Bates I.I., Loranger É., Chabot B. // SN Appl. Sci. 2020. V. 2. P. 1540. https://doi.org/10.1007/s42452-020-03342-5
  27. Zhuang Zh., Cheng J., Jia H. et al. // Vib. Spectrosc. 2007. V. 43. № 2. P. 306. https://doi.org/10.1016/j.vibspec.2006.03.009
  28. Ivanova B.B. // Spectrochim. Acta. A. 2006. V. 64. P. 931. https://doi.org/10.1016/j.saa.2005.08.022
  29. Mendiratta Sh., Usman M., Luo T.-T. et al. // Cryst. Growth Des. 2014. V. 14. P. 1572. https://doi.org/10.1021/cg401472k
  30. Li B., ShanShan Ch.-L., ZhouZhou Q. et al. // Mar. Drugs. 2013. V. 11. № 5. P. 1534. https://doi.org/10.3390/md11051534
  31. Prasad S.G., De A., De U. // Int. J. Spectrosc. 2011. V. 2011. P. 1. https://doi.org/10.1155/2011/810936
  32. Pearson R.G. // J. Am. Chem. Soc. 1963. V. 85. № 22. P. 3533. https://doi.org/10.1021/ja00905a001
  33. Peng Ya., Huang H., Zhang Yu. et al. // Nat. Commun. 2018. V. 9. P. 187. https://doi.org/10.1038/s41467-017-02600-2

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2. Fig. 1. ζ-Membrane potential depending on the pH of the electrolyte: 1 – TM; 2 – TM/HNO3; 3 – TM/PEI; 4 – TM + Chitosan.

Жүктеу (906KB)
3. Fig. 2. Micrographs of the surface of composites synthesized during 24 hours: a – TM + Ni-MOX; b – TM/HNO3 + Ni-MOX; c – TM/PEI + Ni-MOX; g – TM + Chitosan + Ni-MOX.

Жүктеу (1MB)
4. Fig. 3. The average specific water productivity of the studied membranes: 1 – TM; 2 – TM + Ni-MOX; 3 – TM/HNO3 + Ni-MOX; 4 – TM/PEI + + Ni-MOX; 5 – TM + Chitosan + Ni-MOX.

Жүктеу (980KB)
5. Fig. 4. Micrographs of the surface of the TM + Chitosan + Ni-MOX sample with different magnification, synthesis time 24 h.

Жүктеу (334KB)
6. Fig. 5. Micrographs of the surface of TM + Chitosan + Ni-MOX composites synthesized during 2 (a), 24 (b) and 48 (c) hours.

Жүктеу (878KB)
7. Fig. 6. Graph of the dependence of the specific gravity of Ni-MOX in the TM + Chitosan + Ni-MOX composite on the duration of synthesis.

Жүктеу (112KB)
8. Fig. 7. RFES spectra: a – TM + Chitosan + Ni-MOX; b – Ni-MOX powder.

Жүктеу (145KB)
9. Fig. 8. IR Fourier spectra: a – TM + Chitosan; b – TM + Chitosan + Ni-MOX; c – Ni-MOX powder.

Жүктеу (316KB)
10. Fig. 9. a – Micrography of Ni-MOX powder; b – radiograph of Ni-MOX after refinement by Rietveld method. Rwp = 3.73, χ2 = 4.1: 1 – experimental; 2 – calculated; 3 – difference.

Жүктеу (1MB)
11. 10. X–ray images of samples: 1 - Ni–MOX powder; 2 – TM + Chitosan; 3 - TM + Chitosan + Ni–MOX, synthesis of 1 hour; 4 - TM + Chitosan + Ni-MOX, synthesis of 2 hours; 5 – TM + Chitosan + Ni-MOX, synthesis of 4 h; 6 – TM + Chitosan + Ni-MOX, synthesis of 8 h; 7 – TM + Chitosan + Ni-MOX, synthesis of 24 h; 8 – TM + + Chitosan + Ni-MOX, synthesis of 48 h.

Жүктеу (1MB)
12. Fig. 11. Spectra of RFES Ni-MOX after contact with cadmium (a), copper (b), and caesium (b) ions.

Жүктеу (340KB)
13. 12. Kinetics of metal ion adsorption: 1-Ni – MOX + Li+, 2-Ni –MOX + Mg2+, 3-Ni – MOX + + Zn2+, 4-Ni – MOX + Ag+, 5-Ni-MOX + Cd2+.

Жүктеу (899KB)

© Russian Academy of Sciences, 2024