2d Nanocrystals Of Zinc And Manganese(II, III) Oxides With Morphology Of Perforated Nanoflakes Obtained Using Hydrolysis Reactions Of Mn(OAc)2 AND Zn(OAc)2 By Gaseous Ammonia On The Surface Of Their Aqueous Solutions
- 作者: Tolstoy V.P.1, Gulina L.B.1, Shilovskikh E.E.1
-
隶属关系:
- Saint Petersburg State University
- 期: 卷 69, 编号 3 (2024)
- 页面: 311-318
- 栏目: SOLID STATE CHEMISTRY IN MODERN MATERIALS SCIENCE
- URL: https://gynecology.orscience.ru/0044-457X/article/view/666595
- DOI: https://doi.org/10.31857/S0044457X24030059
- EDN: https://elibrary.ru/YETWFI
- ID: 666595
如何引用文章
详细
The paper shows for the first time that 2D ZnO nanocrystals with the structure of wurtzite and Mn3O4 hausmanite and morphology of perforated nanoflakes can be obtained on the basis of compounds that are formed as a result of reactions occurring on the surface of aqueous solutions of acetates of the corresponding metals when it is treated in air atmosphere with gaseous NH3. Application of the marked nanocrystals on the silicon surface makes it hydrophobic in the case of ZnO and superhydrophilic in the case of Mn3O4. Using the proposed synthesis technique, sequential and multiple deposition of these compounds on the substrate surface can be performed and such “multilayers” can exhibit new properties.
全文:

作者简介
V. Tolstoy
Saint Petersburg State University
编辑信件的主要联系方式.
Email: v.tolstoy@spbu.ru
ORCID iD: 0000-0003-3857-7238
俄罗斯联邦, Saint Petersburg
L. Gulina
Saint Petersburg State University
Email: v.tolstoy@spbu.ru
ORCID iD: 0000-0002-1622-4311
俄罗斯联邦, Saint Petersburg
E. Shilovskikh
Saint Petersburg State University
Email: v.tolstoy@spbu.ru
俄罗斯联邦, Saint Petersburg
参考
- Osada M., Sasaki T. // Adv. Mater. 2012. V. 24. № 2. P. 210. https://doi.org/10.1002/adma.201103241
- Yapryntsev A.D., Baranchikov A.E., Ivanov V.K. // Russ. Chem. Rev. 2020. V. 89. № 6. P. 629. https://doi.org/10.1070/rcr4920
- Aslanov L.A., Dunaev S.F. // Russ. Chem. Rev. 2018. V. 87. № 9. P. https://doi.org/882. 10.1070/rcr4806
- Khan K., Tareen A.K., Aslam M. et al. // Nanoscale. 2019. V. 11. № 45. P. 21622. https://doi.org/10.1039/c9nr05919a
- Tsukanov A.A., Turk B., Vasiljeva O. et al. // Nanomaterials. 2022. V. 12. № 4. P. 650. https://doi.org/10.3390/nano12040650
- Mei L., Zhu S., Yin W. et al. // Theranostics. 2020. V. 10. № 2. P. 757. https://doi.org/10.7150/thno.39701
- Wang L., Takada K., Kajiyama A. et al. // Chem. Mater. 2003. V. 15. № 23. P. 4508. https://doi.org/10.1021/cm0217809
- Kaneva M.V., Tolstoy V.P. // Russ. J. Gen. Chem. 2022. V. 92. № 11. P. 2339. https://doi.org/10.1134/S1070363222110184
- Wu G., Wu X., Zhu X. et al. // ACS Nano. 2022. V. 16. № 7. P. 10130. https://doi.org/10.1021/acsnano.2c02841
- Zhou M., Lou X.W., Xie Y. // Nano Today. 2013. V. 8. № 6. P. 598. https://doi.org/10.1016/j.nantod.2013.12.002
- Haque F., Daeneke T., Kalantar-zadeh K. et al. // Nano-Micro Lett. 2018. V. 10. № 2. P. 23. https://doi.org/10.1007/s40820-017-0176-y
- Tolstoy V.P., Gulina L.B., Golubeva A.A. et al. // J. Solid State Electrochem. 2019. V. 23. № 2. P. 573. https://doi.org/10.1007/s10008-018-04165-6
- Korotcenkov G., Tolstoy V.P. // Nanomaterials. 2023. V. 13. № 2. P. 237. https://doi.org/10.3390/nano13020237
- Tolstoy V.P., Gulina L.B., Meleshko A.A. // Russ. Chem. Rev. 2023. V. 92. № 3. P. RCR5071. https://doi.org/10.57634/RCR5071
- Zhang Q., Chen D., Song Q. et al. // Surf. Interfaces. 2021. V. 23. P. 100979. https://doi.org/10.1016/j.surfin.2021.100979
- Peng L., Fang Z., Zhu Y. et al. // Adv. Energy Mater. 2018. V. 8. № 9. P. 1702179. https://doi.org/10.1002/aenm.201702179
- Peng L., Xiong P., Ma L. et al. // Nat. Commun. 2017. V. 8. P. 15139. https://doi.org/10.1038/ncomms15139
- Gicha B.B., Tufa L.T., Kang S. et al. // Nanomaterials. 2021. V. 11. № 6. P. 1388. https://doi.org/10.3390/nano11061388
- Nazarian-Samani M., Haghighat-Shishavan S., Nazarian-Samani M. et al. // Prog. Mater. Sci. 2021. V. 116. P. 100716. https://doi.org/10.1016/j.pmatsci.2020.100716
- Napi M.L.M., Sultan S.M., Ismail R. et al. // Materials. 2019. V. 12. № 18. P. 2985. https://doi.org/10.3390/ma12182985
- Abinaya K., Sharvanti P., Rajeswari Yogamalar N. // Nanosystems: Phys. Chem. Math. 2023. V. 14. № 4. P. 454. https://doi.org/10.17586/2220-8054-2023-14-4-454-466
- Afineevskii A.V., Prozorov D.A., Smirnov D.V. et al. // Russ. J. Gen. Chem. 2023. V. 93. № 6. P. 1560. https://doi.org/10.1134/S1070363223060282
- Nagornov I.A., Mokrushin A.S., Simonenko E.P. et al. // Russ. J. Inorg. Chem. 2022. V. 67. № 4. P. 539. https://doi.org/10.1134/S0036023622040143
- Julien C.M., Mauger A. // Nanomaterials. 2017. V. 7. № 11. P. 396. https://doi.org/10.3390/nano7110396
- Makvandi P., Wang C., Zare E.N. et al. // Adv. Funct. Mater. 2020. V. 30. № 22. P. 1910021. https://doi.org/10.1002/adfm.201910021
- Gulina L.B., Tolstoy V.P., Solovev A.A. et al. // Prog. Nat. Sci. 2020. V. 30. № 3. P. 279. https://doi.org/10.1016/j.pnsc.2020.05.001
- Ishioka T., Shibata Y., Takahashi M. et al. // Spectrochim. Acta, Part A. 1998. V. 54. № 12. P. 1827. https://doi.org/10.1016/S1386-1425(98)00063-8
- Dubal D.P., Dhawale D.S., Salunkhe R.R. et al. // J. Electrochem. Soc. 2010. V. 157. № 7. P. A812. https://doi.org/10.1149/1.3428675
- Poul L., Jouini N., Fiévet F. // Chem. Mater. 2000. V. 12. № 10. P. 3123. https://doi.org/10.1021/cm991179j
- Sabine T.M., Hogg S. // Acta Crystallogr., Sect. B. 1969. V. 25. № 11. P. 2254. https://doi.org/10.1107/S0567740869005528
- Aminoff G. // Z. Kristallogr. 1926. V. 64. № 63. P. 222.
- Wyckoff R.W.G. Crystal Structures. N.Y.: Interscience Publishers, 1963. 134 p.
- Strykanova V.V., Gulina L.B., Tolstoy V.P. et al. // ACS Omega. 2020. V. 5. № 25. P. 15728. https://doi.org/10.1021/acsomega.0c02258
- Su B., Li M., Shi Z. et al. // Langmuir. 2009. V. 25. № 6. P. 3640. https://doi.org/10.1021/la803948m
- Gulina L.B., Gurenko V.E., Tolstoy V.P. et al. // Langmuir. 2019. V. 35. № 47. P. 14983. https://doi.org/10.1021/acs.langmuir.9b02338
- Masuda Y., Ohji T., Kato K. // ACS Appl. Mater. Interfaces. 2012. V. 4. № 3. P. 1666. https://doi.org/10.1021/am201811x
补充文件
