Reconstruction of interspecies relations in the models of population dynamics based on individual-oriented approach
- Авторлар: Sheremetyeva A.D.1, Mikhailov A.I.1,2, Bobyrev A.E.3, Kriksunov E.A.2
-
Мекемелер:
- Russian Federal Institute of Fisheries and Oceanography
- Lomonosov Moscow State University
- Severtzov Institute of Ecology and Evolution, RAS
- Шығарылым: Том 85, № 3 (2024)
- Беттер: 230-243
- Бөлім: (Indexed in “Current Contents”)
- URL: https://gynecology.orscience.ru/0044-4596/article/view/652463
- DOI: https://doi.org/10.31857/S0044459624030042
- EDN: https://elibrary.ru/vdbfkh
- ID: 652463
Дәйексөз келтіру
Аннотация
The subject of the article is to establish the relationship between trophic functions as properties of interacting populations as a whole and the characteristics of individual foraging behavior of consumers. The article classifies general predator–prey models and trophic functions as integral components of these models. It is shown that simple assumptions about the individual behavior of predators and prey lead to a specific type of trophic function – the piecewise linear Arditi–Ginzburg dependence or its “smoothed” version. The obtained theoretical results are verified using an original simulation model representing the interaction between the consumer and food objects at the individual level.
Авторлар туралы
A. Sheremetyeva
Russian Federal Institute of Fisheries and Oceanography
Email: abobyrev@mail.ru
Ресей, Okruzhnoy proezd, 19, Moscow, 105187
A. Mikhailov
Russian Federal Institute of Fisheries and Oceanography; Lomonosov Moscow State University
Email: abobyrev@mail.ru
Lomonosov Moscow State University, Philosophical Faculty
Ресей, Okruzhnoy proezd, 19, Moscow, 105187; Leninskie Gory, Study-Scientific Housing “Shuvalovsky”, Moscow, 119234A. Bobyrev
Severtzov Institute of Ecology and Evolution, RAS
Хат алмасуға жауапты Автор.
Email: abobyrev@mail.ru
Ресей, Leninsky Prospect, 33, Moscow, 119071
E. Kriksunov
Lomonosov Moscow State University
Email: abobyrev@mail.ru
Lomonosov Moscow State University, Biological Faculty, Department of Ichthyology
Ресей, Leninskie Gory, 1, Bld. 12, Moscow, 119234Әдебиет тізімі
- Аджабян Н.А., Логофет Д.О., 1992. Динамика размеров популяций в трофических цепях // Проблемы экологического мониторинга и моделирования экосистем. СПб.: Гидрометеоиздат. Т. 14. С. 135–153.
- Базыкин А.Д., 1985. Математическая биофизика взаимодействующих популяций. М.: Наука. 182 с.
- Бигон М., Харпер Дж., Таунсенд К., 1989. Экология. Особи, популяции и сообщества: В 2-х т. Т. 2. М.: Мир. 477 с.
- Булгакова Т.И., Бобырев А.Е., 2018. Роль трофологических исследований в анализе многовидового промысла // Журн. общ. биологии. Т. 79. № 6. С. 461–470.
- Гинзбург Л.Р., Гольдман Ю.И., Раилкин А.И., 1971. Математическая модель взаимодействия двух популяций “хищник–жертва” // Журн. общ. биологии. Т. 32. № 6. С. 724–730.
- Ивлев B.С., 1947. Некоторые вопросы пищевой конкуренции животных // Успехи соврем. биологии. Т. 24. № 6. С. 417–432.
- Ивлев В.С., 1955. Экспериментальная экология питания рыб. М.: Пищепромиздат. 272 с.
- Колмогоров А.Н., 1972. Качественное изучение математических моделей динамики популяций // Пробл. кибернетики. Т. 25. С. 100–106.
- Михайлов А.И., Бобырев А.В., Булгакова Т.И., Шереметьев А.Д., 2019. Возвращаясь к вопросу о популяционной регуляции: обобщенная модель формирования пополнения промысловых популяций рыб // Журн. общ. биологии. Т. 80. № 6. С. 418–426.
- Михеев В.Н., 2006. Неоднородность среды и трофические отношения у рыб. М.: Наука. 191 с.
- Михеев В.Н., Бобырев А.Е., Криксунов Е.А., Михеев А.В., 1997. Стратегии поиска корма молодью рыб: Исследование на математической модели // Вопр. ихтиологии. Т. 37. № 2. С. 242–247.
- Свирежев Ю.М., Логофет Д.О., 1978. Устойчивость биологических сообществ. М.: Наука. 352 с.
- Тютюнов Ю.В., Титова Л.И., 2018. От Лотки–Вольтерра к Ардити–Гинзбургу: 90 лет эволюции трофических функций // Журн. общ. биологии. Т. 79. № 6. С. 428–448.
- Тютюнов Ю.В., Титова Л.И., Сурков Ф.А., Бакаева Е.Н., 2010. Трофическая функция коловраток-фитофагов (Rotatoria). Эксперимент и моделирование // Журн. общ. биологии. Т. 71. № 1. С. 52–62.
- Arditi R., Abillon J.M., Vieira da Silva J., 1978. A predator–prey model with satiation and intraspecific competition // Ecol. Model. V. 5. № 3. P. 173–191.
- Arditi R., Akçakaya H.R., 1990. Underestimation of mutual interference of predators // Oecologia. V. 83. № 3. P. 358–361.
- Arditi R., Ginzburg L.R., 1989. Coupling in predator-prey dynamics: ratio-dependence // J. Theor. Biol. V. 139. № 3. P. 311–326.
- Bazykin A.D., Berezovskaya F.S., Denisov G.A., Kuznetzov Yu.A., 1981. The influence of predator saturation effect and competition among predators on predator–prey system dynamics // Ecol. Model. V. 14. № 1–2. P. 39–57.
- Beddington J.R., 1975. Mutual interference between parasites or predators and its effect on searching efficiency // J. Anim. Ecol. V. 44. № 1. P. 331–340.
- Crowley P.H., Martin E.K., 1989. Functional responses and interference within and between year classes of a dragonfly population // J. North Am. Benthol. Soc. V. 8. № 3. P. 211–221.
- DeAngelis D.L., Goldstein R.A., O’Neill R.V., 1975. A model for trophic interaction // Ecology. V. 56. № 4. P. 881–892.
- Fox W.W., 1970. An exponential yield model for optimizing exploited fish populations // Trans. Am. Fish. Soc. V. 99. P. 80–88.
- Gause G.F., 1934. The Struggle for Existence. Baltimore: Williams and Wilkins. 163 p.
- Gentleman W., Leising A., Frost B., Strom S., Murray J., 2003. Functional responses for zooplankton feeding on multiple resources: a review of assumptions and biological dynamics // Deep-Sea Res. II. V. 50. P. 2847–2875.
- Getz W.M., Westerhoff H.V., Hofmeyr J.-H.S., Snoep J.L., 2003. Control analysis of trophic chains // Ecol. Model. V. 168. P. 153–171.
- Gibson G.A., Musgrave D.L., Hinckley S., 2005. Non-linear dynamics of a pelagic ecosystem model with multiple predator and prey types // J. Plankton Res. V. 27. P. 427–447.
- Ginzburg L.R., 1998. Assuming reproduction to be a function of consumption raises doubts about some popular predator–prey models // J. Anim. Ecol. V. 67. № 2. P. 325–327.
- Harrison G.W., 1995. Comparing predator–prey models to Luckinbill’s experiment with Didinium and Paramecium // Ecology. V. 76. № 2. P. 357–374.
- Hassell M.P., Varley G.C., 1969. New inductive population model for insect parasites and bearing on biological control // Nature. V. 223. P. 1133–1137.
- Holling C.S., 1959. Some characteristics of simple types of predation and parasitism // Can. Entomol. V. 91. P. 385–398.
- Holling C.S., 1965. The functional response of predators to prey density and its role in mimicry and population regulation // Memoirs of the Entomological Society of Canada. V. 45. P. 3–60.
- Ivlev V.S., 1961. Experimental Ecology of the Feeding of Fishes. New Haven: Yale Univ. Press. 302 p.
- Jeschke J.M., Kopp M., Tollrian R., 2002. Predator functional responses: Discriminating between handling and digesting prey // Ecol. Monogr. V. 72. P. 95–112.
- Koen-Alonso M., 2007. A process-oriented approach to the multi-species functional response // From Energetics to Ecosystems: The Dynamics and Structure of Ecological Systems / Eds Rooney N., McCann K.S., Noakes D.L.G. Springer. Р. 1–36.
- Leslie P.H., 1948. Some further notes on the use of matrices in population mathematics // Biometrika. V. 35. P. 213–245.
- Leslie P.H., Gower J.C., 1960. The properties of a stochastic model for the predator–prey type of interaction between two species // Biometrika. V. 47. № 3/4. P. 219–234.
- Lotka A.J., 1925. Elements of Physical Biology. Baltimore: Williams and Wikins. 460 p.
- Mesnil B., Rochet M.-J., 2010. A continuous hockey stick stock–recruit model for estimating MSY reference points // ICES J. Marine Sci. V. 67. № 8. P. 1780–1784.
- Pella J.S., Tomlinson P.K., 1969. A generalized stock-production model // Bull. Inter-Amer. Trop. Tuna Comm. V. 13. P. 421–496.
- Rosenzweig M.L., MacArthur R.H., 1963. Graphical representation and stability conditions of predator-prey interactions // Am. Nat. V. 97. P. 209–223.
- Schaefer M.B., 1954. Some aspects of the dynamics of populations important to the management of the commercial marine fisheries // Bull. Inter-Am. Trop. Tuna Comm. V. 1. № 2. P. 27–56.
- Solomon M.E., 1949. The natural control of animal populations // J. Anim. Ecol. V. 18. P. 1–35.
- Sutherland W.J., 1983. Aggregation and the ‘ideal free’ distribution // J. Anim. Ecol. V. 52. P. 821–828.
- Trân J.K., 2008. A predator–prey functional response incorporating indirect interference and depletion // Verh. Internat. Verein Limnol. V. 30. № 2. P. 302–305.
- Tyutyunov Yu., Titova L., Arditi R., 2008. Predator interference emerging from trophotaxis in predator–prey systems: An individual-based approach // Ecol. Complex. V. 5. № 1. P. 48–58.
- Volterra V., 1926. Fluctuations in the abundance of a species considered mathematically // Nature. V. 188. P. 558–560.
- Yodzis P., 1994. Predator-prey theory and management of multispecies fisheries // Ecol. Appl. V. 4. P. 51–58.
Қосымша файлдар
