Nanofibers based on cellulose acetates

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

The properties of cellulose diacetate solutions in acetone and acetone–water mixtures at ratios of 95:5, 93.5:7.5 and 90:10 were studied. The optimal concentrations of cellulose diacetate solution for the formation of nanofibers from a mixture of water and acetone with a water content of 7.5 wt% were found. Cellulose diacetate nanofibers were obtained in the form of nonwoven materials with an average nanofiber diameter of 350±10 nm. In order to obtain cellulose nanofibers with a thread diameter of 350–400 nm, cellulose diacetate nanofibers were hydrolyzed in a 0.1 M potassium hydroxide solution.

Негізгі сөздер

Толық мәтін

Рұқсат жабық

Авторлар туралы

A. Sarymsakov

Institute of Polymer Chemistry and Physics of the Academy of Sciences of the Republic of Uzbekistan

Хат алмасуға жауапты Автор.
Email: sarimsakov1948@mail.ru
ORCID iD: 0000-0003-4562-7280
Өзбекстан, Tashkent, 100128

A. Shukurov

Institute of Polymer Chemistry and Physics of the Academy of Sciences of the Republic of Uzbekistan

Email: sarimsakov1948@mail.ru
ORCID iD: 0000-0002-2889-0258
Өзбекстан, Tashkent, 100128

N. Ashurov

Institute of Polymer Chemistry and Physics of the Academy of Sciences of the Republic of Uzbekistan

Email: sarimsakov1948@mail.ru
ORCID iD: 0000-0001-5246-434X
Өзбекстан, Tashkent, 100128

Kh. Yunusov

Institute of Polymer Chemistry and Physics of the Academy of Sciences of the Republic of Uzbekistan

Email: sarimsakov1948@mail.ru
ORCID iD: 0000-0002-4646-7859
Өзбекстан, Tashkent, 100128

Әдебиет тізімі

  1. Иноземцева О.А., Сальковский Ю.Е., Северюхина А.Н., Видяшева И.В., Петрова Н.В., Метвалли Х.А., Стецюра И.Ю., Горин Д.А. // Усп. хим. 2015. Т. 84. № 3. С. 251; Inozemtseva O.A., Salkovskiy Y.E., Severyukhina A.N., Vidyasheva I.V., Petrova N.V., Metwally H.A., Stetciura I.Y., Gorin D.A. // Russ. Chem. Rev. 2015. Vol. 84. N 3. P. 251. doi: 10.1070/RCR4435
  2. Kadomae Y., Taniguchi T., Sugimoto M., Koyama K. // Int. Polym. Proc. 2008. Vol. 23. P. 377.
  3. Megelski S., Stephens J.S., Rabolt J.F., Bruce C.D. // Macromolecules. 2002. Vol. 35. P. 8456. doi: 10.1021/ma020444a
  4. Li D., Xia Y. // Adv. Mater. 2004. Vol. 16. P. 1151. doi: 10.1002/adma.200400719
  5. Sill T.J., Recum H.V. // Biomaterials. 2008. Vol. 29. N 13. P. 1989. doi: 10.1016/j.biomaterials.2008.01.011
  6. Peranidze K., Safronova T.V., Kildeeva N.R. // Polymers. 2023. Vol. 15. P. 1174. doi: 10.3390/polym15051174
  7. Chen W., Ma H., Xing B. // Int J Biol Macromol. 2020. Vol. 20. P. 33121. doi: 10.1016/j.ijbiomac.2020.04.249
  8. Lee J., Moon J.Y., Lee J.C., Hwang T.I., Park C.H., Kim C.S. // Carbohydr. Polym. 2021. doi 10.1016/ j.carbpol.2020.117191
  9. Петров А.В., Симонов-Емельянов И.Д., Филатов Ю.Н. // Вестн. МИТХТ. 2012. Т. 7. № 5. С. 103.
  10. Юданова Т.Н., Филатов Ю.Н., Афанасов И.М. // Пласт. массы. 2013. № 9. С. 57.
  11. Ergashovich Y.K., Abdupatto O’g’li A.A., Shodievich A.N. // Polym. Adv. Technol. 2024. Vol. 35. N 7. P. e6496. doi: 10.1002/pat.6496
  12. Lyu Q., Peng B., Xie Z., Du S., Zhang L., Zhu J. // ACS Appl. Mater. Interfaces. 2020. Vol. 23. P. 57373. doi: 10.1021/acsami.0c17931
  13. Wsoo M.A., Shahir S., Mohd S.P., Nayan H.M., Razak I.A. // Carbohydr. Res. 2020. Vol. 491. P. 107978. doi 10.1016/ j.carres.2020.107978
  14. Vaseashta A. // Appl. Phys. Lett. 2007. Vol. 90. P. 9. doi: 10.1063/1.2709958
  15. Ольхов А.А., Староверова О.В., Гольдштрах М.А., Хватов А.В., Гумаргалиева К.З., Иорданский А.Л. // Хим. физика. 2016. Т. 35. № 10. С. 53.
  16. Crabbe-Mann M., Tsaoulidis D., Parhizkar M., Edirisinghe M. // Cellulose 2018. Vol. 25. P. 1687. doi: 10.1007/s10570-018-1673-y
  17. Um-i-Zahra S., Shen X.X., Li H., Zhu L. // J. Polym. Res. 2014. Vol. 21. P. 602. doi: 10.1007/s10965-014-0602-5
  18. Wang X.Y., Drew C., Lee S.H., Senecal K.J., Kumar J., Sarnuelson L.A. // Nano Lett. 2002. Vol. 2. P. 1273. doi: 10.1021/nl020216u
  19. Liu H.Q., Hsieh Y.L. // J. Polym. Sci. (B). 2002. Vol. 40. P. 2119. doi: 10.1002/polb.10261
  20. Son W.K., Youk J.H., Lee T.S., Park W.H. // J. Polym. Sci. (B). 2004. Vol. 42. P. 5. doi: 10.1002/polb.10668
  21. Тагер А.А. Физикохимия полимеров. М.: Химия, 1978. 544 с.
  22. Геллер Б.Э. Практическое руководство по физикохимии волокнообразующих полимеров. М.: Химия, 1996. 432 с.
  23. Голубев А.Е., Ларина Ю.Н., Кувшинова С.А., Бурмистров В.А. // Изв. вузов. Сер. хим. и химическая технология. 2015. Т. 58. № 10. С. 33.
  24. Потехина Л.Н., Седелкин В.М. // Вестн. СГТУ. 2011. № 1. С. 52.
  25. Мамажанов Г.О. Разработка технологии получения лакокрасочных материалов из нитро- и диацетатцеллюлозы. Наманган, 2022. 122 с.

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2. Fig. 1. Dependence of the viscosity of cellulose diacetate solutions on the concentration of the acetone-water solvent (%): 95:5 (1), 92.5:7.5 (2), 90:10 (3).

Жүктеу (67KB)
3. Fig. 2. Dependence of the viscosity of cellulose diacetate solutions of different concentrations (1 – 5%, 2 – 10%, 3 – 15%) on the thermodynamic quality of the solvent.

Жүктеу (60KB)
4. Fig. 3. Rheograms of cellulose diacetate (DAC) solutions of different concentrations in an acetone-water mixture at the following mass ratios: 1 – DAC 5% (90:10), 2 – DAC 5% (92.5:7.5), 3 – DAC 5% (95:5), 4 – DAC 10% (90:10), 5 – DAC 10% (92.5:7.5), 6 – DAC 10% (95:5), 7 – DAC 15% (90:10), 8 – DAC 15% (92.5:7.5), 9 – DAC 15% (95:5).

Жүктеу (115KB)
5. Fig. 4. SEM images of nanofibers obtained from 5% cellulose diacetate solutions at different magnifications: (a) ×1200, (b) ×3700.

Жүктеу (196KB)
6. Fig. 5. SEM images of nanofibers obtained from 10% cellulose diacetate solutions at different magnifications: (a) ×500, (b) ×1000.

Жүктеу (266KB)
7. Fig. 6. SEM micrographs of cellulose nanofibers obtained from 10% cellulose diacetate solutions containing 5 (a), 7.5 (b) and 10% (c) water in acetone after deacetylation with 0.1 M aqueous KOH solution.

Жүктеу (178KB)
8. Fig. 7. IR spectra of cellulose diacetate nanofibers (1) and cellulose nanofibers (2).

Жүктеу (113KB)
9. Fig. 8. X-ray diffraction patterns of cellulose nanofibers (1) and cellulose diacetate (2).

Жүктеу (59KB)

© Russian Academy of Sciences, 2024