LaFeO3 nanofibers as materials for gas sensors

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

LaFeO3 nanofibers were prepared by electrospinning from polymer precursor-filled solutions and characterized by X-ray diffraction, scanning electron microscopy, low-temperature nitrogen adsorption, infrared spectroscopy, and X-ray photoelectron spectroscopy. The gas-sensing properties of the materials were studied in detecting CO, NH3, acetone and methanol. The synthesized LaFeO3 fibers exhibit a high sensory response to volatile organic compounds.

Full Text

Restricted Access

About the authors

V. B. Platonov

Lomonosov Moscow State University

Author for correspondence.
Email: platonovvb@my.msu.ru
ORCID iD: 0000-0003-2151-9592
Russian Federation, 119991, Moscow

N. М. Malinin

Lomonosov Moscow State University

Email: platonovvb@my.msu.ru
ORCID iD: 0009-0008-2685-7826
Russian Federation, 119991, Moscow

I. V. Sapkov

Lomonosov Moscow State University

Email: platonovvb@my.msu.ru
ORCID iD: 0009-0001-6621-7881
Russian Federation, 119991, Moscow

M. N. Rumyantseva

Lomonosov Moscow State University

Email: platonovvb@my.msu.ru
ORCID iD: 0000-0002-3354-0885
Russian Federation, 119991, Moscow

References

  1. Galstyan V., Moumen A., Kumarage G.W.C., Comini E. // Sensors and Actuators (B). 2022. Vol. 357. P. 131466. doi: 10.1016/j.snb.2022.131466
  2. Staerz A., Weimar U., Barsan N. // Sensors and Actuators (B). 2022. Vol. 358. P. 131531. doi 10.1016/ j.snb.2022.131531
  3. Yamazoe N., Shimanoe K. // Woodhead Publishing Series in Electronic and Optical Materials. 2020. P. 3. doi: 10.1016/B978-0-08-102559-8.00001-X
  4. Doshi J., Reneker D. // J. Electrostat. 1995. Vol. 35. P. 151. doi: 10.1016/0304-3886(95)00041-8
  5. Li H., Chu Sh., Ma Q., Li H., Che Q., Wang J., Wang G., Yang P. // ACS Appl. Mater. Interfaces. 2019. Vol. 11. P. 31551. doi: 10.1021/acsami.9b10410
  6. Huang B., Zhang Zh., Zhao Ch., Cairang L., Bai J., Zhang Y., Mu X., Du J., Wang H., Pan X., Zhou J., Xie E. // Sensors and Actuators (B). 2018. Vol. 255. P. 2248. doi: 10.1016/j.snb.2017.09.022
  7. Le Kh., Toperczer F., Ünlü F., Paramasivam G., Mathies F., Nandayapa E., List-Kratochvil E.J.W., Fischer Th., Lindfors K., Mathur S. // Adv. Eng. Mater. 2023. P. 2201651. doi: 10.1002/adem.202201651
  8. Ichangi A., Shvartsman V.V., Lupascu D.C., Lê Kh., Grosch M., Schmidt-Verma A.K., Bohr Ch., Verma A., Fischer T., Mathur S. // J. Eur. Ceram. Soc. 2021. Vol. 41. P. 7662. doi: 10.1016/j.jeurceramsoc.2021.08.010
  9. Bohr Ch., Pfeiffer M., Öz S., Toperczer F., Lepcha A., Fischer T., Schütz M., Lindfors K., Mathur S. // ACS Appl. Mater. Interfaces. 2019. Vol. 11. P. 25163. doi: 10.1021/acsami.9b05700
  10. Samantaa P., Bagchi S., Mishra S. // Mater. Today. Proceed. 2015. Vol. 2. P. 4499. doi: 10.1016/j.matpr.2015.10.061
  11. Kima J.-H., Mirzaeib A., Kimb H.W., Kim S.S. // Sensors and Actuators (B). 2019. Vol. 284. P. 628. doi 10.1016/ j.snb.2018.12.120
  12. Laia T.-Y., Fanga T.-H., Hsiaob Y.-J., Chan C.-A. // Vacuum. 2019. Vol. 166. P. 155. doi 10.1016/ j.vacuum.2019.04.061
  13. Fan H., Zhang T., Xu X., Lu N. // Sensors and Actuators (B). 2011. Vol. 153. P. 83. doi: 10.1016/j.snb.2010.10.014
  14. Fang F., Feng N., Wang L., Meng J., Liu G., Zhao P., Gao P., Ding J., Wan H., Guan G. // Appl. Catal. (B). 2010. Vol. 216. P. 184. doi: 10.1016/j.apcatb.2018.05.030
  15. Lee W.-Y., Joong H. Y., Yoon J.-W. // J. Alloys Compd. 2014. Vol. 583. P. 320. doi: 10.1016/j.jallcom.2013.08.191
  16. Alharbi A., Sackmann A., Weimar U., Barsan N. // Sensors and Actuators (B). 2020. Vol. 303. P. 127204. doi: 10.1016/j.snb.2019.127204
  17. Hu J., Chen X., Zhang Y. // Sensors and Actuators (B). 2021. Vol. 349. P. 130738. doi: 10.1016/j.snb.2021.130738
  18. Hübner M., Simion C.E., Tomescu-Stănoiu A., Pokhrel S., Barsan N., Weimar U. // Sensors and Actuators (B). 2011. Vol. 153. P. 347. doi: 10.1016/j.snb.2010.10.046
  19. Thiruppathi K. P., Nataraj D. // Mater. Adv. 2020. Vol. 1. P. 2971. doi: 10.1039/D0MA00602E
  20. Arshad M.F., Kasmi A. El, Waqas M., Tian Z.-Y. //Appl. Energy Combust. Sci. 2021. Vol. 5. P. 100021. doi: 10.1016/j.jaecs.2020.100021
  21. Dean J.A., Lange N.A. Lange’s Handbook of Chemistry. McGraw-Hill, 1992. 1466 p.
  22. Wang X., Qin H., Pei J., Chen Y., Li L., Xie J., Hu J. // J. Rare Earths. 2016. Vol. 34. N 7. P. 704. doi: 10.1016/S1002-0721(16)60082-0
  23. Ali F.A., Nayak R., Achary P.G.R., Mishra D.K., Sahoo S.K., Singh U.P., Nanda B. // Mater. Today Proceed. 2023. Vol. 74. P. 993. doi: 10.1016/j.matpr.2022.11.351
  24. Xiao H., Xue C., Song P., Li J., Wang Q. // Appl. Surf. Sci. 2015. Vol. 337. P. 65. doi: 10.1016/j.apsusc.2015.02.064
  25. Dai Zh., Lee Ch.-S., Kim B.-Y., Kwak Ch.-H., Yoon J.-W., Jeong H.-M., Lee J.-H. // ACS Appl. Mater. Interfaces. 2014. Vol. 6. N 18. P. 16217. doi: 10.1021/am504386q
  26. Koli P.B., Kapadnis K.H., Deshpande U.G., More B.P., Tupe U.J. // Mat. Sci. Res. India. 2020. Vol. 17. N 1. P. 70. doi: 10.13005/msri/170110
  27. Zhang Y., Duan Z., Zou H., Ma M. // Mater. Lett. 2018. Vol. 215. P. 58. doi: 10.1016/j.matlet.2017.12.062
  28. Shingange K., Swart H.C., Mhlongo G.H. // Physica (B). 2020. Vol. 578. P. 411883. doi 10.1016/ j.physb.2019.411883
  29. Zhang Z., Ji H.M., Gu Y.F., Chen X.D., Yu D.Y. // Key Eng. Mater. 2007. Vol. 336–338. P. 684. doi: 10.4028/ href='www.scientific.net/KEM.336-338.684' target='_blank'>www.scientific.net/KEM.336-338.684
  30. Cyza A., Cieniek L., Moskalewicz T., Maziarz W., Kusinski J., Kowalski K., Kopia A. // Catalysts. 2020. Vol. 10. N 9. P. 954. doi: 10.3390/catal10090954
  31. Chen Y., Qin H., Wang X., Li L., Hu J. // Sensors and Actuators (B). 2016. Vol. 235. P. 56. doi 10.1016/ j.snb.2016.05.059

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. X-ray diffraction patterns of the obtained LaFeO3 nanofibers.

Download (200KB)
3. Fig. 2. Micrographs of the obtained LaFeO3 samples.

Download (398KB)
4. Fig. 3. IR spectra of synthesized LaFeO3 samples.

Download (230KB)
5. Fig. 4. XPS spectra of synthesized LaFeO3 nanofibers.

Download (476KB)
6. Fig. 5. Temperature dependences of the sensor signal of LaFeO3 during detection of (a) NH3 (20 ppm), (b) CO (20 ppm), (c) acetone (20 ppm), (d) methanol (20 ppm).

Download (233KB)

Copyright (c) 2024 Russian Academy of Sciences