Контакты для термоэлементов с барьерными слоями на основе вольфрама

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Доступ платный или только для подписчиков

Аннотация

Предложен способ получения контактов на основе W–Ni и W–Co, выполняющих функции диффузионно-барьерных слоев в конструкции термоэлементов. Контакты сформированы электрохимическим осаждением пленок W–Ni и W–Co на образцах наноструктурированных термоэлектрических материалов на основе Bi2Te2.4Se0.6, Bi0.4Sb1.6Te3, GeTe и PbTe, используемых для изготовления термоэлементов. Получены пленки толщиной до 15 мкм с разбросом по толщине не более 5%. Содержание вольфрама в составе пленок W–Ni составило 33.5 мас%, в пленках W–Co — 29.7 мас%. Удельное сопротивление и удельное контактное сопротивление пленок составило 3.4∙10–7 Ом∙м и 3.8∙10–9 Ом∙м2 соответственно. Адгезионная прочность пленок составляет 10−13 МПа. Установлено, что контакты, сформированные на образцах термоэлектрических материалов электрохимическим осаждением пленок на основе W–Co, могут быть использованы в конструкции термоэлементов с рабочими температурами до 900 K.

Полный текст

Доступ закрыт

Об авторах

Егор Павлович Корчагин

Национальный исследовательский университет «Московский институт электронной техники»

Автор, ответственный за переписку.
Email: eg.ad2013@yandex.ru
ORCID iD: 0000-0002-5618-0608
Россия, 124498, г. Москва, г. Зеленоград, пл. Шокина, д. 1

Юрий Исаакович Штерн

Национальный исследовательский университет «Московский институт электронной техники»

Email: eg.ad2013@yandex.ru
ORCID iD: 0000-0003-3882-389X

д.т.н.

Россия, 124498, г. Москва, г. Зеленоград, пл. Шокина, д. 1

Иван Николаевич Петухов

Национальный исследовательский университет «Московский институт электронной техники»

Email: eg.ad2013@yandex.ru
ORCID iD: 0000-0002-2905-4649
Россия, 124498, г. Москва, г. Зеленоград, пл. Шокина, д. 1

Дмитрий Геннадьевич Громов

Национальный исследовательский университет «Московский институт электронной техники»

Email: eg.ad2013@yandex.ru
ORCID iD: 0000-0002-4563-9831

д.т.н.

Россия, 124498, г. Москва, г. Зеленоград, пл. Шокина, д. 1

Максим Юрьевич Штерн

Национальный исследовательский университет «Московский институт электронной техники»

Email: eg.ad2013@yandex.ru
ORCID iD: 0000-0002-0279-2393

д.т.н.

Россия, 124498, г. Москва, г. Зеленоград, пл. Шокина, д. 1

Максим Сергеевич Рогачев

Национальный исследовательский университет «Московский институт электронной техники»

Email: eg.ad2013@yandex.ru
ORCID iD: 0000-0001-5108-0555

к.т.н.

Россия, 124498, г. Москва, г. Зеленоград, пл. Шокина, д. 1

Роман Михайлович Рязанов

Научно-производственный комплекс «Технологический центр»

Email: eg.ad2013@yandex.ru
ORCID iD: 0000-0002-2464-8712
Россия, 124498, г. Москва, г. Зеленоград, пл. Шокина, д. 1

Список литературы

  1. Wu D., Feng D., Xu X., He M., Xu J., He J. Realizing high figure of merit plateau in Ge1–xBixTe via enhanced Bi solution and Ge precipitation // J. Alloys Compd. 2019. V. 805. P 831−839. https://doi.org/10.1016/j.jallcom.2019.07.120
  2. Lee K. H., Shin W. H., Kim H.-S., Lee K., Roh J. W., Yoo J., Kim J.-I., Kim S. W., Kim S.-I. Synergetic effect of grain size reduction on electronic and thermal transport properties by selectively-suppressed minority carrier mobility and enhanced boundary scattering in Bi0.5Sb1.5Te3 alloys // Scr. Mater. 2019. V. 160. N 15. P. 1519. https://doi.org/10.1016/j.scriptamat.2018.09.038
  3. Vishwakarma A., Chauhan N. S., Bhardwaj R., Johari K. K., Dhakate S. R., Gahtori B., Bathula S. Melt-spun SiGe nano-alloys: Microstructural engineering towards high thermoelectric efficiency // J. Electron. Mater. 2021. V. 50. P. 364−374. https://doi.org/10.1007/s11664-020-08560-6
  4. Yang Z., Wang S., Sun Y., Xiao Y., Zhao L.-D. Enhancing thermoelectric performance of n-type PbTe through separately optimizing phonon and charge transport properties // J. Alloys Compd. 2020. V. 828. ID 154377. https://doi.org/10.1016/j.jallcom.2020.154377
  5. Shtern M. Yu. Nanostructured thermoelectric materials for temperatures of 200–1200 K obtained by spark plasma sintering // Semiconductors. 2023. V. 56. N 13. P. 437–443. https://doi.org/10.1134/S1063782622130152
  6. Yu Y., Xu X., Bosman M., Nielsch K., He J. Germanium-telluride-based thermoelectrics // Nat. Rev. Electr. Eng. 2024. https://doi.org/10.1038/s44287-023-00013-6
  7. Shtern M., Rogachev M., Shtern Y., Gromov D., Kozlov A., Karavaev I. Thin-film contact systems for thermocouples operating in a wide temperature range // J. Alloys Compd. 2021. V. 852. ID 156889. https://doi.org/10.1016/j.jallcom.2020.156889
  8. Zhu X., Cao L., Zhu W., Deng Y. Enhanced interfacial adhesion and thermal stability in bismuth telluride/nickel/copper multilayer films with low electrical contact resistance // Adv. Mater. Interfaces. 2018. V. 5. ID 1801279. https://doi.org/10.1002/admi.201801279
  9. Korchagin E., Shtern M., Petukhov I., Shtern Y., Rogachev M., Kozlov A., Mustafoev B. Contacts to thermoelectric materials obtained by chemical and electrochemical deposition of Ni and Co // J. Electron. Mater. 2022. V. 51. P. 5744–5758. https://doi.org/10.1007/s11664-022-09860-9
  10. Фиалков Ю. Я., Грищенко В. Ф. Электровыделение металлов из неводных растворов. Киев: Наук. думка, 1985. C. 95–97.
  11. Asgari M., Ghasem B., Monirvaghefi M. Electroless deposition of Ni–W–Mo–Co–P films as a binder-free, efficient and durable electrode for electrochemical hydrogen evolution // Electrochim. Acta. 2023. V. 446. ID 142001. https://doi.org/10.1016/j.electacta.2023.142001
  12. Zoui M. A., Bentouba S., Stocholm J. G., Bourouis M. A review on thermoelectric generators: Progress and applications // Energies. 2020. V. 13. N 3606. P. 1–32. 10.3390/en13143606' target='_blank'>https://doi: 10.3390/en13143606
  13. Штерн М. Ю., Караваев И. С., Рогачев М. С., Штерн Ю. И., Мустафоев Б. Р., Корчагин Е. П., Козлов А. О. Методики исследования электрического контактного сопротивления в структуре металлическая пленка–полупроводник // Физика и техника полупроводников. 2022. T. 56. № 1. C. 1097–1104. https://doi.org/10.21883/FTP.2021.12.51689.01

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML
2. Рис. 1. Изображение поверхности пленок W–Ni (а) и W–Co (б), полученных на образцах GeTe.

Скачать (241KB)
3. Рис. 2. Энергодисперсионная диаграмма состава пленок сплавов W–Ni (а) и W–Co (б), полученных на образцах GeTe.

Скачать (174KB)
4. Рис. 3. Изображение скола образца Bi0.4Sb1.6Te3 с нанесенной контактной системой W–Co/Sn после отжига при 600 K.

Скачать (215KB)
5. Рис. 4. Поэлементное картирование скола образцов Bi0.4Sb1.6Te3 и GeTe со сформированной контактной системой W–Co/Sn после отжига при 600 и 900 K.

Скачать (270KB)

© Российская академия наук, 2024