Effect of Silica Nanofiller on Thermal-Oxidative Degradation of Epoxy Composites Synthesized by the Sol-Gel Method

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Using the sol-gel method, amine-curing polymer silica composites based on cycloaliphatic epoxy resin were obtained. The content of SiO2 filler in the composites was 0.5–10 wt %. The formed mass fractal of silica nanoparticles during the synthesis of composites has a reinforcing effect on the epoxy polymer matrix. The patterns of non-isothermal destruction of polymers and composites in the presence of atmospheric oxygen have been established. At 5 wt % SiO2, the effective activation energy of the main stage of destruction of composites increases from 165 to 254 kJ mol–1. As a result, the rate of weight loss of the samples decreases (the temperature corresponding to 50% weight loss shifts towards higher values by 30°C). The mechanism of high-temperature oxidation of pure polymer and composite with oxygen has been studied. It has been established that the introduction of SiO2 into the composition of composites increases the activation energy of isothermal oxidation of the substrate.

About the authors

T. N. Mogila

Donetsk State University

Email: acjournal.nauka.nw@yandex.ru
283001, Donetsk, Russia

V. M. Mikhal'chuk

Donetsk State University

Email: acjournal.nauka.nw@yandex.ru
283001, Donetsk, Russia

R. I. Lyga

Donetsk State University

Email: acjournal.nauka.nw@yandex.ru
283001, Donetsk, Russia

V. A. Glazunova

Galkin Donetsk Institute for Physics and Engineering

Author for correspondence.
Email: acjournal.nauka.nw@yandex.ru
283048, Donetsk, Russia

References

  1. Yang Y., Xian G., Li H., Sui L. Thermal aging of an anhydride-cured epoxy resin // Polym. Degrad. Stab. 2015. V. 118. P. 111-119. https://doi.org/10.1016/j.polymdegradstab.2015.04.017
  2. Mallakpour S., Naghdi M. Polymer/SiO2 nanocomposites: Production and applications // Prog. Mater. Sci. 2018. V. 97. P. 409-447. https://doi.org/10.1016/j.pmatsci.2018.04.002
  3. Zeng X., Yu S., Ye L., Li M., Pan Z, Sun R., Xu J. Encapsulating carbon nanotubes with SiO2: A Strategy for applying them in polymer nanocomposites with high mechanical strength and electrical insulation //j. Mater. Chem. C. 2015. N 3. P. 187-195. https://doi.org/10.1039/C4TC01051E
  4. Muhammud A. M., Gupta N. K. Nanostructured SiO2 material: Synthesis advances and applications in rubber reinforcement // RSC Adv. 2022. N 12. P. 18524-18546. https://doi.org/10.1039/d2ra02747j
  5. Patel K. K., Purohit R. Dispersion of SiO2 nano particles on epoxy based polymer nano composites and its characterization // Orient. J. Chem. 2018. V. 34. N 6. P. 2998-3003. https://dx.doi.org/10.13005/ojc/340641
  6. Ai J., Cheng W., Wang P., Chen Q. Silica solid particles toughening, strengthening and anti-aging on epoxy resin //j. Appl. Polym. Sci. 2020. V. 138. N 18. 50331. https://doi.org/10.1002/app.50331
  7. Baskaran K., Ali M., Gingrich K., Porter D. L., Chong S., Riley B., Peak C. W., Naleway S. E., Zharov I., Carlson K. Sol-gel derived silica: A Review of polymer-tailored properties for energy and environmental applications // Micropor. Mesopor. Mater. 2022. V. 336. 111874. https://doi.org/10.1016/j.micromeso.2022.111874
  8. Bounor-Legaré V., Cassagnau P. In situ synthesis of organic inorganic hybrids or nanocomposites from sol-gel chemistry in molten polymers // Prog. Polym. Sci. 2014. V. 39. N 8. P. 1473-1497. https://doi.org/10.1016/j.progpolymsci.2014.04.003
  9. Лыга Р. И., Михальчук В. М., Могила Т. Н., Рудяк В. В. Термостабильные эпоксидно-кремнеземные композиты, полученные упрощенным золь-гель методом // Вестн. Донецкого нац. ун-та: Сер. А. 2022. № 3. С. 41-51. https://www.elibrary.ru/wbfeme
  10. Wu G., Ma L., Liu L., Chen L., Huang Y. Preparation of SiO2-GO hybrid nanoparticles and the thermal properties of methylphenylsilicone resins/SiO2-GO nanocomposites // Thermochim. Acta. 2015. V. 613. P. 77-86. https://doi.org/10.1016/j.tca.2015.05.026
  11. Kango S., Kalia S., Celli A., Njuguna J., Habibi Y., Kumar R. Surface modification of inorganic nanoparticles for development of organic-inorganic nanocomposites - A Review // Prog. Polym. Sci. 2013. V. 38. Iss. 8. P. 1232-1261. https://doi.org/10.1016/j.progpolymsci.2013.02.003
  12. Liu C., Lee J., Small C., Ma J., Elimelech M.Comparison of organic fouling resistance of thin-film composite membranes modified by hydrophilic silica nanoparticles and zwitterionic polymer brushes //j. Memb. Sci. 2017. V. 544. P. 135-142. https://doi.org/10.1016/j.memsci.2017.09.017
  13. Widati A. A., Nuryono N., Kartini I. Water-repellent glass coated with SiO2-TiO2-methyltrimethoxysilane through sol-gel coating // AIMS Mater. Sci. 2019. V. 6. N 1. P. 10-24. https://doi.org/10.3934/matersci.2019.1.10

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2023 Russian Academy of Sciences