МЕТОД УСРЕДНЕНИЯ В ЗАДАЧЕ ПОСТРОЕНИЯ АВТОКОЛЕБАТЕЛЬНЫХ РЕШЕНИЙ РАСПРЕДЕЛЕННЫХ КИНЕТИЧЕСКИХ СИСТЕМ

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Построен метод усреднения для двухкомпонентных распределенных кинетических систем с малой диффузией в ограниченной одномерной области с условиями непроницаемости на границе. Построены преобразования рассматриваемой распределенной системы, позволяющие выделить одну “быструю” и счетное число “медленных” переменных. Доказаны теоремы о соответствии стационарных и периодических решений, а также инвариантных торов усредненных уравнений “медленных” переменных соответственно пространственно неоднородным периодическим решениям и инвариантным торам исходных уравнений аналогичного характера устойчивости. Предложены алгоритмы построения периодических решений (циклов) и инвариантных торов исходных уравнений в виде разложения по степеням малого параметра, обеспечивающих построениеасимптотическихформулуказанныхавтоколебательныхобъектов.Сформулированыусловиясходимости соответствующих разложений. Библ. 20.

Об авторах

Е. П. Кубышкин

ЯрГУ им. П.Г. Демидова

Email: kubysh.e@yandex.ru
Ярославль, Россия

Список литературы

  1. Бутузов В.Ф., Васильева А.Б, Нефедов Н.Н. Асимптотическая теория контрастных структур (обзор) // Автоматика и телемеханика. 1997. № 7. С. 4–31.
  2. Васильева А.Б, Бутузов В.Ф., Нефедов Н.Н. Сингулярно возмущенные задачи с пограничными и внутренними слоями // Тр. матем. ин.та им. В.А. Стеклова. 2010. Т. 268. С. 268–283.
  3. Бутузов В.Ф., Нефедов Н.Н., Шнайдер К.Р. Сингулярно возмущенные задачи в случае смены устойчивости // Итоги науки и техн. Сер. Соврем. матем. и ее прилож. Тематические обзоры. 2002. Т. 109. С. 5–242.
  4. Нефедов Н.Н. Развитие методов асимптотического анализа переходных слоев в уравнениях реакции–диффузии–адвекции: теория и применение // Ж. вычисл. матем. и матем. физ. 2021. Т. 61. № 2074–2094.
  5. Васильева А.Б., Кащенко С.А., Колесов Ю.С., Розов Н.Х. Бифуркация автоколебаний нелинейных параболических уравнений с малой диффузией // Матем. сб. 1986. Т. 130. № 4. С. 172.
  6. Кащенко С.А. О квазинормальных формах для параболических уравнений с малой диффузией // Докл. АН СССР. 1988. Т. 299. № 5. С. 1049–1052.
  7. Кащенко С.А. Пространственные особенности высокомодовых бифуркаций двухкомпонентных систем с малой диффузией // Дифференц. уравнения. 1989. Т. 5. № 2. С. 262–270.
  8. Кащенко С.А. Простейшие критические случаи в динамике нелинейных систем с малой диффузией // Тр. ММО. 2018. Т. 79. № 1. С. 97–115.
  9. Колесов Ю.С. Бифуркация инвариантных торов параболических систем с малой диффузией // Матем. сб. 1993. Т. 184. № 3. С. 121–136.
  10. Колесов А.Ю., Розов Н.Х., Садовничий В.А. О проблеме возникновения автоволн в параболических системах с малой диффузией // Матем. сб. 2007. Т. 198. № 11. С. 67–106.
  11. Мищенко Е.Ф., Садовничий В.А., Колесов А.Ю., Розов Н.Х. Автоволновые процессы в нелинейных средах с диффузией. М.: Физматлит, 2005. 432 с.
  12. Нефедов Н.Н. Периодические контрастные структуры в задаче реакция–диффузия с быстрой реакцией и малой диффузией // Матем. заметки. 2022. Т. 112. № 4. С. 601–612.
  13. Крылов Н.М., Боголюбов Н.Н. Введение в нелинейную механику. Киев: Из-во АН УССР, 1937. 352 с.
  14. Хейл Дж. Колебания в нелинейных системах. М.: Мир, 1966. 230 с.
  15. Kubyshkin E.P., Moriakova A.R. Features of Bifurcations of Periodic Solutions of the Ikeda Equation // Rus. J. Nonlin. Dyn. 201. V. 14. № 3. P. 301–324.
  16. Кубышкин Е.П., Морякова А.Р. Особенности бифуркаций периодических решений уравнения Мэкки–Гласса // Ж. вычисл. матем. и матем. физ. 2019. Т. 59. № 8. С. 1340–1357.
  17. Kubyshkin E.P., Moriakova A.R. Analysis of special cases in the study of bifurcations of periodic solutions of the ikeda equation // Rus. J. Nonlin. Dyn. 2020. V. 16. № 3. P. 437–451.
  18. Соболевский П.Е. Об уравнениях параболического типа в банаховом пространстве // Тр. ММО. 1961. Т. 10. С. 297–350.
  19. Красносельский М.А., Вайникко Г.М., Забрейко П.П. и др. Приближенные методы решения операторных уравнений. М.: Наука, 1969.
  20. Крейн С.Г. Линейные дифференциальные уравнения в банаховом пространстве. М.: Наука, 1967. 464 с.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Российская академия наук, 2024