Visual categorization in birds

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Categorization is a cognitive process that leads to the ability to perceive similar but not identical stimuli as equivalent. To classify an object into a category, an animal must learn to recognize key features of a new object using the experience gained from previous interactions with similar objects. Due to this, categorization eliminates the need to examine each new object anew, significantly expanding the adaptive capabilities of the organism. The ability to categorize is inherent in animals with different types of organization of the nervous system. The review summarizes approaches to the study of visual categorization in birds – animals that have outstanding abilities for this process. Analysis of extensive data obtained in studies of visual categorization in different models in birds opens up the possibility of not only identifying the general biological neural bases and mechanisms of this process, but can also be used to expand the neuromorphic properties of artificial intelligence.

全文:

受限制的访问

作者简介

E. Diffine

Lomonosov Moscow State University

编辑信件的主要联系方式.
Email: diffineea@my.msu.ru
俄罗斯联邦, Moscow

A. Tiunova

Lomonosov Moscow State University

Email: diffineea@my.msu.ru
俄罗斯联邦, Moscow

K. Anokhin

Lomonosov Moscow State University

Email: diffineea@my.msu.ru
俄罗斯联邦, Moscow

参考

  1. Анохин К.В., Тиунова А.А. Интерокулярный перенос опыта при формировании категориальной памяти у цыплят. Доклады Академии Наук. 1996. 348 (4): 564–566.
  2. Anderson C., Parra R., Chapman H., Steinemer A., Porter B., Colombo M. Pigeon nidopallium caudolaterale, entopallium, and mesopallium ventrolaterale neural responses during categorisation of Monet and Picasso paintings. Sci Rep. 2020. 10: 15971.
  3. Andrew R. Behavioral and neural plasticity: The use of the domestic chick as a model. Oxford: Oxford University Press. 1991.
  4. Anokhin K., Tiunova A., Rose S. Reminder effects – reconsolidation or retrieval deficit? Pharmacological dissection with protein synthesis inhibitors following reminder for a passive-avoidance task in young chicks. Europ. Jour. of Neurosc. 2002. 5: 1759–1765.
  5. Apostel A., Hahn L., Rose J. Jackdaws form categorical prototypes based on experience with category exemplars. Brain Struct Funct. 2023. 229: 593–608.
  6. Ash H., Chang A., Ortiz R., Kulkarni P., Rauch B., Colman R., Ferris C., Ziegler T. Structural and functional variations in the prefrontal cortex are associated with learning in pre-adolescent common marmosets (Callithrix jacchus). Behav. Brain. Res. 2023. 430: 113920.
  7. Atkinson R., Bevilaqua L., Rostas J., Hunter M. Discriminative taste aversion learning: A learning task for older chickens. Neurobiology of learning and memory. 2003. 79: 25–31.
  8. Atoji Y., Wild J. Afferent and efferent projections of the mesopallium in the pigeon (Columba livia). J Comp Neurol. 2012. 520: 717–741.
  9. Azizi A., Pusch R., Koenen C., Klatt S., Bröker F., Thiele S. Emerging category representation in the visual forebrain hierarchy of pigeons (Columba livia). Behav. Brain. 2019. 356: 423–434.
  10. Balda R., Kamil A. Linking Life Zones, Life History Traits, Ecology, and Spatial Cognition in Four Allopatric Southwestern Seed Caching Corvids. Pap. in Behav. and Biolog. Scien. 2006. 36.
  11. Bateson P. Is Imprinting Such a Special Case? Philosophical Transactions of The Royal Society B: Biological Sciences. 1990. 329: 125–131.
  12. Bateson P., Chantrey D. Retardation of discrimination learning in monkeys and chicks previously exposed to both stimuli. Nature. 1972. 237: 173–174.
  13. Behroozi M., Helluy X., Ströckens F., Gao М., Pusch R., Tabrik S., Tegenthoff M., Otto T., Axmacher N., Kumsta R., Moser D., Genc E., Güntürkün O. Event-related functional MRI of awake behaving pigeons at 7T. Nat Commun. 2020. 4715.
  14. Benard J., Stach S., Giurfa M. Categorization of visual stimuli in the honeybee Apis mellifera. Anim Cogn. 2006. 9: 257–270.
  15. Bhatt R.S., Wasserman E.A., Reynolds W.F., Knauss K.S. Conceptual behavior in pigeons: Categorization of both familiar and novel examples from four classes of natural and artificial stimuli. Jour.of Expe. Psy.: Anim. Beh. Proc. 1988. 14: 219–234.
  16. Bird C., Emery N. Insightful problem solving and creative tool modification by captive nontool-using rooks. Proc. Natl. Acad. Sci. USA. 2009. 106: 10370–10375.
  17. Bischof H., Eckmeier D., Keary N., Lowel S., Mayer U., Michael N. Multiple visual field representations in the visual Wulst of a laterally eyed bird, the zebra finch (Taeniopygia guttata). PLoS One. 2016. 11: e0154927.
  18. Bringmann A., Syrbe S., Görner K., Kacza J., Francke M., Wiedemann P., Reichenbach A. The primate fovea: Structure, function and development. Prog. Retin. Eye. Res. 2018. 66: 49–84.
  19. Briscoe S., Albertin C., Rowell J., Ragsdale C. Neocortical Association Cell Types in the Forebrain of Birds and Alligators. Curr. Biol. 2018. 28 (5): 686–696.e6.
  20. Budzynski C., Bingman V. Participation of the thalamofugal visual pathway in a coarse pattern discrimination task in an open arena. Behav. Brain. 2004. Res. 153: 543–56.
  21. Budzynski C., Gagliardo A., Ioalé P., Bingman V. Participation of the homing pigeon thalamofugal visual pathway in sun-compass associative learning. Eur. J. Neurosci. 2002. 15: 197–210.
  22. Castro L., Remund Wiger E., Wasserman E. Focusing and shifting attention in pigeon category learning. J. Exp. Psychol. Anim. Learn. Cognit. 2021. 47: 371–383.
  23. Castro L., Wasserman E.A. Attentional shifts in categorization learning: Perseveration but not learned irrelevance. Behav Processes. 2016. 123: 63–73.
  24. Castro L., Wasserman E.A. Feature predictiveness and selective attention in pigeons’ categorization learning. J. Exp. Psychol. Anim. Learn. Cognit. 2017. 43: 231–242.
  25. Castro L., Wasserman E.A. Pigeons’ tracking of relevant attributes in categorization learning. Jour. of Exp. Psych: Animal Lear. and Cogn. 2014. 40: 195–211.
  26. Cerella J. Pigeons and perceptrons. Pattern Recognition. 1986. 19: 431–438.
  27. Cerella J. The pigeon’s analysis of pictures. Pattern Recognition. 1980. 12: 1–6.
  28. Chang L., Tsao D.Y. The Code for Facial Identity in the Primate Brain. Cell. 2017. 169 (6): 1013–1028.e14.
  29. Cherepov A., Tiunova A., Anokhin K. The power of innate: Behavioural attachment and neural activity in responses to natural and artificial objects in filial imprinting in chicks. Front. Physiol. 2022. 13: 1006463.
  30. Clark W., Colombo M. Seeing the Forest for the Trees, and the Ground Below My Beak: Global and Local Processing in the Pigeon’s Visual System. Front Psychol. 2022. 13: 888528.
  31. Cook R., Fagot J. First trial rewards promote 1-trial learning and prolonged memory in pigeon and baboon. Proceedings of the National Academy of Sciences. 2009. 106: 9530–9533.
  32. Cook R., Levison D., Gillett S., Blaisdell A. Capacity and limits of associative memory in pigeons. Psych. Bull. & Rev. 2005. 12: 350–358.
  33. Cook R., Patton T., Shimizu T. Functional segregation of the entopallium in pigeons. Philosophy (london, England). 2013. 130: 59–86.
  34. Daisley J.N., Mascalzoni E., Salva O.R., Rugani R., Regolin L. Lateralization of social cognition in the domestic chicken (Gallus gallus). Phil. Trans. R. Soc. Lond. B Biol. Sci. 2009. 364: 965–981.
  35. Dittrich L., Rose J., Buschmann J., Bourdonnais M., Güntürkün O. Peck tracking: a method for localizing critical features within complex pictures for pigeons. Anim Cogn. 2010. 13: 133–143.
  36. Ditz H., Fechner J., Nieder A. Cell-type specific pallial circuits shape categorical tuning responses in the crow telencephalon. Communications Biology. 2022. 5: 1–13.
  37. Ditz H.M., Nieder A. Neurons selective to the number of visual items in the corvid songbird endbrain. Proc. Natl. Acad. Sci. USA. 2015. 112:7827–7832.
  38. Divac I., Mogensen J. The prefrontal «cortex» in the pigeon catecholamine histofluorescence. Neuroscience. 1985. 15: 677–682.
  39. Fagot J., Cook R. Evidence for large long-term memory capacities in baboons and pigeons and its implication for learning and the evolution of cognition. Proceed. of the Nat. Acad. of Scien. 2006. 103: 17564–17567.
  40. Farries M.A. The oscine song system considered in the context of the avian brain: lessons learned from comparative neurobiology. Brain, Behavior and Evolution. 2001. 58: 80–100.
  41. Fernández M., Morales C., Durán E., Fernández-Colleman S., Sentis E., Mpodozis J., Karten H. J., Marín G.J. Parallel organization of the avian sensorimotor arcopallium: tectofugal visual pathway in the pigeon (Columba livia). Journal of Comparative Neurology. 2020. 528: 597–623.
  42. Fite K. V., Rosenfield-Wessels S. A comparative study of deep avian foveas. Brain, Behavior and Evolution, 1975. 12 (1–2): 97–115.
  43. Freedman D.J., Riesenhuber M., Poggio T., Miller E.K. Categorical representation of visual stimuli in the primate prefrontal cortex. Science. 2001; 291: 5502.
  44. Freedman D.J., Riesenhuber M., Poggio T., Miller E.K. A comparison of primate prefrontal and inferior temporal cortices during visual categorization. J. Neurosci. 2003; 23: 5235–5246.
  45. Freiwald W.A., Tsao D.Y. Functional compartmentalization and viewpoint generalization within the macaque face-processing system. Science. 2010. 330 (6005): 845–51.
  46. Gagliardo A., Bonadonna F., Divac I. Behavioural effects of ablations of the presumed «prefrontal cortex» or the corticoid in pigeons. Behav Brain Res. 1996. 78: 155–162.
  47. Gagliardo A., Mazzotto M., Divac I. Memory of radial maze behavior in pigeons after ablations of the presumed equivalent of mammalian prefrontal cortex. Behav. Neurosci. 1997. 111: 955–962.
  48. Graham R. Avian vision. Curr Biol. 2022. 32: R1079–R1085.
  49. Gross C.G., Rocha-Miranda C.E., Bender D.B. Visual properties of neurons in inferotemporal cortex of the macaque. J. Neurophysiol. 1972; 35: 96–111.
  50. Gross C.G., Rodman H.R., Gochin P.M., Colombo M. Inferior temporal cortex as a pattern recognition device. In: Baum E, editor. Proceedings of the Third Annual NEC Research Symposium. Philadelphia: SIAM Press; 1993. 44–73.
  51. Gu Y., Wang Y., Zhang T., Wang S. Stimulus size selectivity and receptive field organization of ectostriatal neurons in the pigeon. J. Comp. Physiol. 2002; 188: 173–178.
  52. Güntürkün O. Cognitive impairments after lesions of the neostriatum caudolaterale and its thalamic afferent in pigeons: functional similarities to the mammalian prefrontal system? J Hirnforsch. 1997. 38: 133–143.
  53. Güntürkün O. The avian ‘prefrontal cortex’ and cognition. Curr Opin Neurobiol. 2005. 15: 686–693.
  54. Güntürkün O., Bugnyar T. Cognition without cortex. Trends Cogn Sci. 2016. 20: 291–303.
  55. Güntürkün O., Koenen C., Iovine F., Garland A., Pusch R. The neuroscience of perceptual categorization in pigeons: a mechanistic hypothesis Learn. Behav. 2018. 46: 229–241
  56. Güntürkün O., Ströckens F., Ocklenburg S. Brain Lateralization: A Comparative Perspective. Physiological reviews. 2020. 100: 1019–1063.
  57. Hahn L.A., Rose J. Executive control of sequence behavior in pigeons involves two distinct brain regions. eNeuro. 2023. 10: 1–11.
  58. Hartmann B., Güntürkün O. Selective deficits in reversal learning after neostriatum caudolaterale lesions in pigeons: possible behavioral equivalencies to the mammalian prefrontal system. Behav Brain Res. 1998. 96: 125–133.
  59. Helduser S., Güntürkün O. Neural substrates for serial reaction time tasks in pigeons. Behav Brain Res. 2012. 230:132–143.
  60. Herculano-Houzel S. Brains matter, bodies maybe not: the case for examining neuron numbers irrespective of body size. Ann N Y Acad Sci. 2011. 1225: 191–9.
  61. Herculano-Houzel S. The human brain in numbers: a linearly scaled-up primate brain. Front Hum Neurosci. 2009. 3: 31.
  62. Herrnstein R., Loveland D., Cable C. Natural concepts in pigeons. Journal of Experimental Psychology: Animal Behavior Processes. 1976. 2: 285–302.
  63. Herrnstein R.J., Loveland D.H. Complex visual concept in the pigeon. Science. 1964. 146: 549–551.
  64. Höglund J., Mitkus M., Olsson P., Lind O., Drews A., Bloch N. I., Kelber A. Strandh M. Owls lack UV-sensitive cone opsin and red oil droplets, but see UV light at night: retinal transcriptomes and ocular media transmittance. Vision Res. 2019. 158: 109–119.
  65. Honey R.C., Horn G., Bateson P., Walpole M. Functionally distinct memories for imprinting stimuli: behavioral and neural dissociations. Behavioral Neuroscience. 1995. 109: 689–698.
  66. Horn G. Pathways of the past: the imprint of memory. Nat Rev Neurosci. 2004. 5: 108–20.
  67. Huber L., Aust U. Mechanisms of Perceptual Categorization in Birds. In: ten Cate C, Healy SD, eds. Avian Cognition. Cambridge University Press. 2017. Pp. 208–228.
  68. Hunt G.R. Manufacture and use of hook-tools by new Caledonian crows. Nature. 1996. 379: 249–251.
  69. Iwaniuk A.N., Hurd P.L. The evolution of cerebrotypes in birds. Brain Behav Evol. 2005. 65: 215–230.
  70. Jarvis E.D., Güntürkün O., Bruce L., Csillag A., Karten H., Kuenzel W., Medina L., Paxinos G., Perkel D.J., Shimizu T., Striedter G., Wild J.M., Ball G.F., Dugas-Ford J., Durand S.E., Hough G.E., Husband S., Kubikova L., Lee D.W., Mello C.V., Powers A., Siang C., Smulders T.V., Wada K., White S.A., Yamamoto K., Yu J., Reiner A., Butler A.B. Avian Brain Nomenclature Consortium. Avian brains and a new understanding of vertebrate brain evolution. Nat Rev Neurosci. 2005. 6 (2): 151–9.
  71. Johnston A., Burne T. Aposematic coloration enhances memory formation in domestic chicks trained in a weak passive avoidance learning paradigm. Brain research bulletin 2008. 76: 313–6.
  72. Johnston M., Anderson C., Colombo M. Neural correlates of sample-coding and reward-coding in the delay activity of neurons in the entopallium and nidopallium caudolaterale of pigeons (Columba livia) Behav. Brain Res. 2017. 317: 382–392.
  73. Johnston M., Colombo M. Entopallium. In: Vonk J, Shackelford T, editors. Encyclopedia of Animal Cognition and Behavior. 2019. Berlin: Springer.
  74. Kabadayi C., Osvath M. Ravens parallel great apes in flexible planning for tool-use and bartering. Science. 2017. 357: 202–204.
  75. Karten H.J. Vertebrate brains and evolutionary connectomics: on the origins of the mammalian ‘neocortex’. Philos Trans R Soc Lond B Biol Sci. 2015. 370 (1684): 20150060.
  76. Katz J.S., Wright A.A., Bodily K.D. Issues in the Comparative Cognition of Abstract-Concept Learning. Comp Cogn Behav Rev. 2007. 2: 79–92.
  77. Keller F.S., Schoenfeld W.N. Principles of psychology. 1950. New York, NY: Appleton-Century-Crofts.
  78. Kendrick K.M, Baldwin B.A. Cells in temporal cortex of conscious sheep can respond preferentially to the sight of faces. Science. 1987. 236 (4800): 448–50.
  79. Kersten Y., Friedrich-Müller B., Nieder A. A brain atlas of the carrion crow (Corvus corone). J Comp Neurol. 2022. 530: 3011–3038.
  80. Kirsch J.A., Vlachos I., Hausmann M., Rose J., Yim M.Y., Aertsen A., Güntürkün O. Neuronal encoding of meaning: establishing category-selective response patterns in the avian ‘prefrontal cortex’. Behav. Brain Res. 2009. 198: 214–223.
  81. Kirschhock M.E., Ditz H.M., Nieder A. Behavioral and Neuronal Representation of Numerosity Zero in the Crow. J Neurosci. 2021. 41: 4889–4896.
  82. Kirschhock M.E., Nieder A. Association neurons in the crow telencephalon link visual signs to numerical values. Proc Natl Acad Sci USA . 2023. 120: e2313923120.
  83. Kirschhock M.E., Nieder A. Number selective sensorimotor neurons in the crow translate perceived numerosity into number of actions. Nat Commun. 2022. 13: 6913.
  84. Koenen C., Pusch R., Bröker F., Thiele S., Güntürkün O. Categories in the pigeon brain: A reverse engineering approach. J Exp Anal Behav. 2016. 105: 111–22.
  85. Kröner S., Güntürkün O. Afferent and efferent connections of the caudolateral neostriatum in the pigeon (Columba livia): a retro- and anterograde pathway tracing study. J. Comp. Neurol. 1999. 407: 228–260.
  86. Kruschke J. ALCOVE: an exemplar-based connectionist model of category learning. Psychological review. 1992. 99: 22–44.
  87. Krützfeldt N.O.E., Wild J.M. Definition and novel connections of the entopallium in the pigeon (Columba livia). J. Comp. Neurol. 2005. 490: 40–56.
  88. Kverková K., Marhounová L., Polonyiová A., Kocourek M., Zhang Y., Olkowicz S., Straková B., Pavelková Z., Vodička R., Frynta D., Němec P. The evolution of brain neuron numbers in amniotes. Proc Natl Acad Sci USA. 2022. 119(11): e2121624119.
  89. Larsson M. Binocular vision, the optic chiasm, and their associations with vertebrate motor behavior. Front. Ecol. Evol. 2015. 3: 89.
  90. Lazareva O., Freiburger K., Wasserman E. Pigeons concurrently categorize photographs at both basic and superordinate levels. Psychon Bull Rev. 2004. 11: 1111–7.
  91. Lazareva O., Wasserman E. A. Effects of stimulus duration and choice delay on visual categorization in pigeons. Learning and Motivation. 2009. 40(2), 132–146.
  92. Letelier J., Marin G., Sentis E., Tenreiro A., Fredes F., Mpodozis J. The mapping of the visual field onto the dorso-lateral tectum of the pigeon (Columba livia) and its relations with retinal specializations. J. Neurosci. Methods. 2004. 132: 161–168.
  93. Levenson R., Krupinski E., Navarro V., Wasserman E. Pigeons (Columba livia) as trainable observers of pathology and radiology breast cancer images. PLoS ONE. 2015. 10: e0141357.
  94. Lombardi C. Matching and oddity relational learning by pigeons (Columba livia): transfer from color to shape. Anim. Cognit. 2007. 11: 67–74.
  95. Lubow R. High-order concept formation in the pigeon. Journal of the Experimental Analysis of Behavior. 1974. 21: 475–483.
  96. Lupyan G. From chair to “chair”: a representational shift account of object labeling effects on memory. J Exp Psychol Gen. 2008. 137: 348–369.
  97. Manns M. It is not just in the genes. Symmetry. 2021. 13: 1815.
  98. Manns M., Güntürkün O. Dual coding of visual asymmetries in the pigeon brain: The interaction of bottom-up and top-down systems. Experimental Brain Research. 2009. 199: 323–332.
  99. Martin G.R. Avian vision. Current biology. CB. 2022. 32: R1079–R1085.
  100. Matsukawa A., Inoue S., Jitsumori M. Pigeon’s recognition of cartoons: Effects of fragmentation, scrambling, and deletion of elements. Behavioural Processes. 2004. 65: 25–34.
  101. Medin D. L., Aguilar C. Categorization. In R. A. Wilson & F. C. Keil (Eds.), MIT Encyclopedia of the Cognitive Sciences. 2001. Cambridge, MA: MIT Press. Pp. 104–106.
  102. Medin D., Schaffer M. Context theory of classification learning. Psychological Review. 1978. 85: 207–238.
  103. Mehlhorn J., Hunt G.R., Gray R.D., Rehkämper G., Güntürkün O. Tool-making new caledonian crows have large associative brain areas. Brain Behav Evol. 2010. 75: 63–70.
  104. Mishkin M., Ungerleider L.G., Macko K.A. Object Vision and Spatial Vision: Two Cortical Pathways. Trends in Neurosciences. 1983. 6: 414–417.
  105. Mitkus M., Olsson P., Toomey M.B., Corbo J.C., Kelber A. Specialized Photoreceptor Composition in the Raptor Fovea. J Comp Neurol. 2017. 525: 2152–2163.
  106. Moeller S., Crapse T., Chang L., Tsao D.Y. The effect of face patch microstimulation on perception of faces and objects. Nat Neurosci. 2017. 20: 743–752.
  107. Mogensen J., Divac I. Behavioural effects of ablation of the pigeon-equivalent of the mammalian prefrontal cortex. Behav Brain. 1993. Res 55: 101–107.
  108. Mogensen J., Divac I. The prefrontal «cortex» in the pigeon: behavioral evidence. Brain Behav Evol. 1982. 21: 60–66.
  109. Moll F.W., Nieder A. Cross-modal associative mnemonic signals in crow endbrain neurons. Curr Biol. 2015. 25: 2196–2201.
  110. Moll F.W., Nieder A. Modality-invariant audio-visual association coding in crow endbrain neurons. Neurobiol Learn Mem. 2017. 137: 65–76.
  111. Moll F.W., Nieder A. The long and the short of it: rule-based relative length discrimination in carrion crows, Corvus corone. Behav Processes. 2014. 107: 142–149.
  112. Nalbach H.O., Wolf-Oberhollenzer F., Kirschfeld K. The pigeon’s eye viewed through an ophthalmoscopic microscope: orientation of retinal landmarks and significance of eye movements. Vis. Res. 1990. 30: 529–540.
  113. Nieder A. Neuroscience of cognitive control in crows. Trends Neurosci 2023. 46: 783–785.
  114. Nieder A. Inside the corvid brain—probing the physiology of cognition in crows. Curr Opin Behav. Sci. 2017. 16: 8–14.
  115. Nieder A. The evolutionary history of brains for numbers. Trends in Cognitive Sciences. 2021. 25: 608–621.
  116. Nieder A., Wagener L., Rinnert P. A neural correlate of sensory consciousness in a corvid bird. Science. 2020. 369: 1626–1629.
  117. Ocklenburg S., Güntürkün O. Hemispheric asymmetries: the comparative view. Front Psychol. 2012. 3: 5.
  118. Pearce J.M. The acquisition of concrete and abstract categories in pigeons. In L. Dachowski C. F. Flaherty Eds., Current topics in animal learning. 1991. Hillsdale, NJ: Lawrence Erlbaum. Pp. 141–164.
  119. Pepperberg I. M. Cognition in the African Grey parrot: Preliminary evidence for auditory/vocal comprehension of the class concept. Animal Learning & Behavior. 1983. 11(2): 179–185.
  120. Petrova L.P., Markovskikh E.P. Bilateral imprinting in the chicks of precocial birds in response to monocular presentation of an object. Zh Vyssh Nerv Deiat Im I P Pavlova. 1986. 36 (4): 692–697.
  121. Pinsk M.A., Arcaro M., Weiner K.S., Kalkus J.F., Inati S.J., Gross C.G., Kastner S. Neural representations of faces and body parts in macaque and human cortex: a comparative FMRI study. J Neurophysiol. 2009. 101 (5): 2581–600.
  122. Pusch R., Clark W., Rose J., Güntürkün O. Visual categories and concepts in the avian brain. Anim. Cogn. 2023. 26: 153–173
  123. Qadri M., Cook R. Adaptive testing of the critical features in 2D-shape discrimination by pigeons and starlings. J Exp Psychol Anim Learn Cogn. 2021. 47: 281–302.
  124. Qadri M., Cook R. Pigeons and humans use action and pose information to categorize complex human behaviors. Vision Research. 2017. 131: 16–25.
  125. Range F., Aust U., Steurer M., Huber L. Visual categorization of natural stimuli by domestic dogs. Anim Cogn. 2008. 11: 339–347.
  126. Rehkämper G., Frahm H.D., Zilles K. Quantitative development of brain and brain structures in birds (galliformes and passeriformes) compared to that in mammals (insectivores and primates) (part 1 of 2). Brain Behav Evol. 1991. 37: 125–134.
  127. Reiner A., Perkel D.J., Mello C.V., Jarvis E.D. Songbirds and the revised avian brain nomenclature. Ann. N.Y. Acad. Sci. 2004. 1016: 77–108.
  128. Reymond L. Spatial visual acuity of the eagle, Aquila audax: a behavioural, optical and anatomical investigation. Vision Res. 1985. 25: 1477–1491.
  129. Reymond L. Spatial visual acuity of the falcon, Falco berigora: a behavioural, optical and anatomical investigation. Vision Res. 1987. 27 (10): 1859–1874.
  130. Rinnert P., Kirschhock M.E., Nieder A. Neuronal correlates of spatial working memory in the endbrain of crows. Curr Biol. 2019. 29: 2616–2624.e4.
  131. Rinnert P., Nieder A. Neural code of motor planning and execution during goal-directed movements in crows. J Neurosci. 2021. 41: 4060–4072.
  132. Rogers C. The necessary and sufficient conditions of therapeutic personality change. Psychotherapy: Theory, Research, Practice, Training. 2007. 44(3): 240–248.
  133. Rogers L. Development and function of lateralization in the avian brain. Brain Res Bull. 2008. 76: 235–244.
  134. Rogers L., Andrew R., Johnston A. Light experience and the development of behavioural lateralization in chicks III. Learning to distinguish pebbles from grains. Behavioural brain research. 2007. 177: 61–69.
  135. Rogers L., Anson J. Lateralization of function in the chicken forebrain. Pharmacology. Biochemistry and Behavior. 1979. 10: 679–686.
  136. Rogers L., Zucca P., Vallortigara G. Advantages of having a lateralized brain. Proceedings of the Royal Society of London. Series B: Biological Sciences. 2004. 271: S420–S422.
  137. Rogers L.J. The molecular biology of early learning, development and sensitive periods with emphasis on the avian brain. Molecular Neurobiology. 1993. 7: 161–187.
  138. Rose J., Colombo M. Neural correlates of executive control in the avian brain. PLoS Biol. 2005. 3: e190.
  139. Rugani R., Rosa Salva O., Regolin L., Vallortigara G. Brain asymmetry modulates perception of biological motion in newborn chicks (Gallus gallus). Behav. Brain Res. 2015. 290: 1–7.
  140. Scarf D., Boy K., Reinert A., Devine J., Güntürkün O., Colombo M. Orthographic processing in pigeons (Columba livia). Proceedings of the National Academy of Sciences. 2016. 113: 11272–11276.
  141. Scarf D., Boy K., Reinert A., Devine J., Güntürkün O., Colombo M. Orthographic processing in pigeons (Columba livia). Proc Natl Acad Sci USA. 2016. 113: 11272–11276.
  142. Smirnova A., Zorina Z., Obozova T., Wasserman E. Crows spontaneously exhibit analogical reasoning. Curr Biol. 2015. 25: 256–260.
  143. Soto F., Wasserman E. A category-overshadowing effect in pigeons: Support for the Common Elements Model of object categorization learning. Journal of Experimental Psychology: Animal Behavior Processes. 2012. 38(3): 322–328.
  144. Soto F., Wasserman E. Error-driven learning in visual categorization and object recognition: a common-elements model. Psychol Rev. 2010. 117: 349–81.
  145. Stacho M., Herold C., Rook N., Wagner H., Axer M., Amunts K., Güntürkün O. A cortex-like canonical circuit in the avian forebrain. Science. 2020. 369(6511): 10.
  146. Stacho M., Ströckens F., Xiao Q., Güntürkün O. Functional organization of telencephalic visual association fields in pigeons. Behavioural Brain Research. 2016. 303: 93–102.
  147. Stewart D.J., Capretta P.J., Cooper A.J., Littlefield V.M. Learning in domestic chicks to both discriminanda. J. of Comparative and Physiological Psychology. 1977. 91: 1095–1109.
  148. Striedter G.F. Evolution of the hippocampus in reptiles and birds. J. Comp. Neurol. 2016. 524 (3): 496–517.
  149. Ströckens F., Neves K., Kirchem S., Schwab C., Herculano-Houzel S., Güntürkün O. High associative neuron numbers could drive cognitive performance in corvid species. J Comp Neurol. 2022. 530: 1588–1605.
  150. Tiunova A., Anokhin K., Rose S., Mileusnic R. Involvement of glutamate receptors, protein kinases, and protein synthesis in memory for visual discrimination in the young chick. Neurob. of lear. and memory. 1996. 65 (3), 233–234.
  151. Tiunova A., Komissarova N., Anokhin K. Mapping the Neural Substrates of Recent and Remote Visual Imprinting Memory in the Chick Brain. Front. in Physiology. 2019. 10: 351.
  152. Troje N.F., Huber L., Loidolt M., Aust U., Fieder M. Categorical learning in pigeons: the role of texture and shape in complex static stimuli. Vision Research. 1999. 39: 353–366.
  153. Tsao D.Y., Freiwald W.A., Knutsen T.A., Mandeville J.B., Tootell R.B. Faces and objects in macaque cerebral cortex. Nat. Neurosci. 2003. 6: 989–995.
  154. Tsao D.Y., Freiwald W.A., Tootell R.B., Livingstone M.S. A cortical region consisting entirely of face-selective cells. Science. 2006. 311: 670–674.
  155. Tsao D.Y., Schweers N., Moeller S., Freiwald W.A. Patches of face-selective cortex in the macaque frontal lobe. Nat Neurosci. 2008. 11 (8): 877–879.
  156. Ungerleider L.G., Haxby J.V. ‘What’ and ‘where’ in the Human Brain. Current Opinion in Neurobiology. 1994. 4 (2): 157–165.
  157. Ünver E., Güntürkün O. Evidence for interhemispheric conflict during meta-control in pigeons. Behavioural Brain Research. 2014. 270: 146–150.
  158. Vallortigara G. Comparative neuropsychology of the dual brain: a stroll through animals’ left and right perceptual worlds. Brain Lang. 2000. 73: 189–219.
  159. Vallortigara G., Andrew R.J. Differential involvement of right and left hemisphere in individual recognition in the domestic chick. Behav Processes. 1994. 33: 41–57.
  160. Vallortigara G., Andrew R.J. Lateralization of response by chicks to change in a model partner. Animal Behaviour. 1991. 41: 187–194.
  161. Veit L., Hartmann K., Nieder A. Neuronal correlates of visual working memory in the corvid endbrain. J Neurosci. 2014. 34: 7778–7786.
  162. Veit L., Hartmann K., Nieder A. Spatially tuned neurons in corvid nidopallium caudolaterale signal target position during visual search. Cereb Cortex. 2015. 27: 1103–1112.
  163. Veit L., Nieder A. Abstract rule neurons in the endbrain support intelligent behaviour in corvid songbirds. Nat Commun. 2013. 4: 2878.
  164. Veit L., Pidpruzhnykova G., Nieder A. Associative learning rapidly establishes neuronal representations of upcoming behavioral choices in crows. Proc Natl Acad Sci USA. 2015. 112: 15208–15213.
  165. Verhaal J., Kirsch J., Vlachos I., Manns M., Güntürkün O. Lateralized reward-related visual discrimination in the avian entopallium. Eur. J. Neurosci. 2012. 35: 1337–1343.
  166. Vernouillet A., Leonard K., Katz J., Magnotti J., Wright A., Kelly D. Abstract-concept learning in two species of new world corvids, pinyon jays (Gymnorhinus Cyanocephalus) and California scrub jays (Aphelocoma Californica). J Exp Psychol Anim. Learn. Cogn. 2021. 47: 384–392.
  167. von Eugen K., Tabrik S., Güntürkün O., Ströckens F. A comparative analysis of the dopaminergic innervation of the executive caudal nidopallium in pigeon, chicken, zebra finch, and carrion crow. J Comp Neurol. 2020. 528: 2929–2955.
  168. Wagener L., Loconsole M., Ditz H.M., Nieder A. Neurons in the endbrain of numerically naive crows spontaneously encode visual numerosity. Curr. Biol. 2018. 28: 1090.e4–1094.
  169. Wagener L., Nieder A. Categorical representation of abstract spatial magnitudes in the executive telencephalon of crows. Curr Biol. 2023. 33: 2151–2162.e5.
  170. Wasserman E., Brooks D., McMurray B. Pigeons acquire multiple categories in parallel via associative learning: A parallel to human word learning? Cognition. 2015. 136: 99–122.
  171. Wasserman E., Turner B., Güntürkün O. The Pigeon as a Model of Complex Visual Processing and Category Learning. Neurosci Insights. 2024. 19: 26331055241235918.
  172. Watanabe S. Effect of lesions in the ectostriatum and Wulst on species and individual discrimination in pigeons. Behav. Brain Res. 1992. 49: 197–203.
  173. Watanabe S. Effects of ectostriatal lesions on discriminations of conspecific, species and familiar objects in pigeons. Behav. Brain Res. 1996. 81: 183–188.
  174. Watanabe S. Effects of ectostriatal lesions on natural concept, pseudoconcept, and artificial pattern discrimination in pigeons. Vis. Neurosci. 1991. 6: 497–506.
  175. Watanabe S., Mayer U., Bischof H. Visual Wulst analyses «where» and entopallium analyses «what» in the zebra finch visual system. Behav. Brain. Res. 2011. 222: 51–56.
  176. Watanabe S., Sakamoto J., Wakita M. Pigeons’ discrimination of paintings by Monet and Picasso. Journal of the Experimental Analysis of Behavior. 1995. 63: 165–174.
  177. Wolfe J.M., Vo M.L.H., Evans K.K., Greene M.R. Visual search in scenes involves selective and non-selective pathways. Trends in Cognitive Sciences. 2011. 15(2): 77–84.
  178. Wright A.A., Lickteig M.T. What is learned when concept learning fails: a theory of restricted-domain relational learning. Learn. Motiv. 2010. 41: 273–286.
  179. Wylie D.R., Pakan J.M., Gutiérrez-Ibáñez C., Iwaniuk A.N. Expression of calcium-binding proteins in pathways from the nucleus of the basal optic root to the cerebellum in pigeons Vis. Neurosci., 2008. 25: 701–707.
  180. Xiao Q., Frost B.J. Looming responses of telencephalic neurons in the pigeon are modulated by optic flow. Brain Res. 2009. 1305: 40–46.
  181. Yamazaki Y., Aust U., Huber L., Hausmann M., Güntürkün O. Lateralized cognition: asymmetrical and complementary strategies of pigeons during discrimination of the “human concept”. Cognition. 2007. 104: 315–344.
  182. Zemel B. M., Nevue A. A., Tavares L. E. S., Dagostin A., Lovell P. V., Jin D. Z., Mello C. V. Motor cortex analogue neurons in songbirds utilize Kv3 channels to generate ultranarrow spikes. eLife. 2023. 12: e81992.
  183. Zentall T., Galizio M., Critchfied T. Categorization, concept learning, and behavior analysis: an introduction. J. Exp. Anal. Behav. 2002. 78: 237–248.
  184. Zentall T.R., Singer R.A., Miller H.C. Matching-to-sample by pigeons: the dissociation of comparison choice frequency from the probability of reinforcement Behav. Process. 2008. 78: 185–190.

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Schematic representation of the principle of category and concept formation. (a) – example of formation of the category “pigeon”. Each individual representative of the category is characterized by a certain set of features or characteristics. Light gray dots reflect the individual characteristics of each of the three pigeons, which leads to the formation of subgroup features – gray dots. The defining component of the category “pigeon” is the overlapping features (dark gray dots), which are common to all members of the category and key to the category “pigeon”. (б) – example of formation of the concept “animal”. Each individual representative is characterized by a certain set of features or characteristics. Light gray dots reflect the individual characteristics of each of the three group representatives, which leads to the formation of subgroup features – gray dots. However, not a single feature is common to all representatives of the category. As a result, a generalized representation is formed, based on the general similarity of the set of features in all three groups.

下载 (152KB)
3. Fig. 2. (а) – the experimental model of the “bead floor”. (б) – the learning and testing curve 24 hours after training. Each point represents the mean number of errors (bead pecks) (± SEM). (в, г) – monocular training on the bead floor and monocular testing after 3 and 24 hours. Control groups: ПГ/ПГ and ЛГ/ЛГ – the same eye is closed during training and testing (ПГ – right, ЛГ – left). Experimental groups: ЛГ/ПГ – left eye closed during training, right eye closed during testing; ПГ/ЛГ – right eye closed during training, left eye closed during testing (see explanations in the Lateralization section). *** – P < 0.001 compared with control groups; ** – P < 0.01 compared with control groups (adapted from Anokhin, Tiunova, 1996).

下载 (195KB)
4. Fig. 3. Schematic representation of the two main visual pathways in birds. The thalamofugal pathway is shown as dotted lines. The tectofugal pathway is shown as dashed lines. Gld – geniculate nucleus of the thalamus; nR – nucleus rotundus; Wulst – hyperpallium – optic eminence of the telencephalon; NCL – nidopallium caudolaterale; optic tectum – optic roof of the midbrain; Ento – entopallium; NFL – nidopallium frontolaterale; MVL – mesopallium ventrolaterale; NIL – nidopallium intramelale laterale.

下载 (87KB)

版权所有 © Russian Academy of Sciences, 2025