Plasticity of the primary visual cortex and mechanisms of perceptual learning

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The review explores current insights into the cellular and molecular mechanisms of visual perceptual learning. It provides evidences that perceptual learning is underlaid by long-term synaptic plasticity occurring within the neural networks of the primary visual cortex. Key models of perceptual learning in animals, including stimulus-dependent plasticity and reinforcement learning, are analyzed. Furthermore, the review provides a rationale for the use of the visual cortex, particularly in rodents, as a convenient model for investigating general mechanisms of learning and memory in vivo. Using this approach, the role of homo- and heterosynaptic plasticity in long-term modifications of sensory responses in the visual cortex was convincingly demonstrated. The data obtained on the model of plasticity of visual responses can be extrapolated to general mechanisms of learning and memory, including those beyond perceptual learning.

全文:

受限制的访问

作者简介

I. Smirnov

Institute of Higher Nervous Activity and Neurophysiology of the Russian Academy of Sciences

编辑信件的主要联系方式.
Email: malyshev@ihna.ru
俄罗斯联邦, Moscow

A. Malyshev

Institute of Higher Nervous Activity and Neurophysiology of the Russian Academy of Sciences

Email: malyshev@ihna.ru
俄罗斯联邦, Moscow

参考

  1. Виноградова О.С. Гиппокамп и память. М.: Наука. 1975. 332 с.
  2. Павлов И.П. Полн. собр. соч. М.: Изд-во АН СССР. 1951–1952. 8 т.
  3. Смирнов И.В., Малышев А.Ю. Гетеросинаптическая пластичность: термин, обозначающий разные феномены. Журн. высш. нервн. деят. им. И.П.Павлова. 2024. 74(6): 643–656.
  4. Соколов Е.Н. Механизмы памяти. М: Изд-во МГУ. 1969. 176 с.
  5. Соколов Е.Н. Нейронные механизмы памяти и обучения. М.: Наука. 1981. 140 с.
  6. Ahmadi M., McDevitt E.A., Silver M.A., Mednick S.C. Perceptual learning induces changes in early and late visual evoked potentials. Vision Res. 2018. 152: 101–109.
  7. Baroncelli L., Sale A., Viegi A., Maya Vetencourt J.F., De Pasquale R., Baldini S., Maffei L. Experience-dependent reactivation of ocular dominance plasticity in the adult visual cortex. Exp. Neurol. 2010. 226(1): 100–109.
  8. Bear M.F., Singer W. Modulation of visual cortical plasticity by acetylcholine and noradrenaline. Nature. 1986. 320(6058): 172–176.
  9. Bravarenko N.I., Gusev P. V, Balaban P.M., Voronin L.L. Postsynaptic induction of long-term synaptic facilitation in snail central neurones. Neuroreport. 1995. 6(8): 1182–1186.
  10. Brown W.M., Bäcker A. Optimal neuronal tuning for finite stimulus spaces. Neural Comput. 2006. 18(7): 1511–1526.
  11. Chen J.-Y., Lonjers P., Lee C., Chistiakova M., Volgushev M., Bazhenov M. Heterosynaptic plasticity prevents runaway synaptic dynamics. J. Neurosci. 2013. 33(40): 15915–15929.
  12. Chistiakova M., Bannon N.M., Bazhenov M., Volgushev M. Heterosynaptic plasticity: Multiple mechanisms and multiple roles. Neuroscientist. 2014. 20(5): 483–98.
  13. Chistiakova M., Bannon N.M., Chen J.-Y., Bazhenov M., Volgushev M. Homeostatic role of heterosynaptic plasticity: models and experiments. Front. Comput. Neurosci. 2015. 9 89.
  14. Chistiakova M., Ilin V., Roshchin M., Bannon X.N., Malyshev A., Kisvárday Z., Volgushev M., Bannon N., Malyshev A., Kisvárday Z., Volgushev M. Distinct Heterosynaptic Plasticity in Fast Spiking and Non-Fast-Spiking Inhibitory Neurons in Rat Visual Cortex. J. Neurosci. 2019. 39(35): 6865–6878.
  15. Christofi G., Nowicky A. V, Bolsover S.R., Bindman L.J. The postsynaptic induction of nonassociative long-term depression of excitatory synaptic transmission in rat hippocampal slices. J. Neurophysiol. 1993. 69(1): 219–229.
  16. Cooke S.F., Bear M.F. Visual Experience Induces Long-Term Potentiation in the Primary Visual Cortex. J. Neurosci. 2010. 30(48): 16304–16313.
  17. Cooke S.F., Komorowski R.W., Kaplan E.S., Gavornik J.P., Bear M.F. Visual recognition memory, manifested as long-term habituation, requires synaptic plasticity in V1. Nat. Neurosci. 2015. 18(2): 262–271.
  18. Debanne D., Shulz D.E., Fregnac Y. Temporal constraints in associative synaptic plasticity in hippocampus and neocortex. Can. J. Physiol. Pharmacol. 1995. 73(9): 1295–1311.
  19. Debanne D., Shulz D.E., Frégnac Y. Activity-dependent regulation of “on” and “off” responses in cat visual cortical receptive fields. J. Physiol. 1998. 508(2): 523–548.
  20. Delgado J.Y., Gómez-González J.F., Desai N.S. Pyramidal Neuron Conductance State Gates Spike-Timing-Dependent Plasticity. J Neurosci. 2010. 30(47):15713–25.
  21. El-Boustani S., Ip J.P.K.K., Breton-Provencher V., Knott G.W., Okuno H., Bito H., Sur M. Locally coordinated synaptic plasticity of visual cortex neurons in vivo. Science. 2018. 360(6395): 1349–1354.
  22. Espadas-Alvarez A.J., Bannon M.J., Orozco-Barrios C.E., Escobedo-Sanchez L., Ayala-Davila J., Reyes-Corona D., Soto-Rodriguez G., Escamilla-Rivera V., De Vizcaya-Ruiz A., Eugenia Gutierrez-Castillo M., Padilla-Viveros A., Martinez-Fong D. Regulation of human GDNF gene expression in nigral dopaminergic neurons using a new doxycycline-regulated NTS-polyplex nanoparticle system. Nanomedicine Nanotechnology, Biol. Med. 2017. 13(4): 1363–1375.
  23. Espinosa J.S., Stryker M.P. Development and Plasticity of the Primary Visual Cortex. Neuron. 2012. 75(2): 230–49.
  24. Eysel U.T., Eyding D., Schweigart G. Repetitive optical stimulation elicits fast receptive field changes in mature visual cortex. Neuroreport. 1998. 9(5): 949–954.
  25. Fong M.F., Finnie P.S.B., Kim T., Thomazeau A., Kaplan E.S., Cooke S.F., Bear M.F. Distinct laminar requirements for nmda receptors in experience-dependent visual cortical plasticity. Cereb. Cortex. 2020. 30(4): 2555–2572.
  26. Frégnac Y., Pananceau M., René A., Huguet N., Marre O., Levy M., Shulz D.E. A re-examination of Hebbian-covariance rules and spike timing-dependent plasticity in cat visual cortex in vivo. Front. Synaptic Neurosci. 2010. 2: 1–21.
  27. Frégnac Y., Shulz D., Thorpe S., Bienenstock E. A cellular analogue of visual cortical plasticity. Nature. 1988. 333 (6171): 367–370.
  28. Frenkel M.Y., Sawtell N.B., Diogo A.C.M., Yoon B., Neve R.L., Bear M.F. Instructive Effect of Visual Experience in Mouse Visual Cortex. Neuron. 2006. 51 (3): 339–349.
  29. Gilbert C.D., Li W. Adult Visual Cortical Plasticity. Neuron. 2012. 75(2): 250–64.
  30. Gu Q., Singer W. Involvement of Serotonin in Developmental Plasticity of Kitten Visual Cortex. Eur. J. Neurosci. 1995. 7(6): 1146–1153.
  31. Harauzov A., Spolidoro M., DiCristo G., De Pasquale R., Cancedda L., Pizzorusso T., Viegi A., Berardi N., Maffei L. Reducing intracortical inhibition in the adult visual cortex promotes ocular dominance plasticity. J. Neurosci. 2010. 30(1): 361–371.
  32. Hebb D.O. The organization of behavior. N.Y.: John Wiley and Sons, Inc. 1949. 335 p.
  33. Hensch T.K. Critical period plasticity in local cortical circuits. Nat. Rev. Neurosci. 2005. 6(11): 877–888.
  34. Hubel D.H., Wiesel T.N. Receptive fields of cells in striate cortex of very young, visually inexperienced kittens. J. Neurophysiol. 1963. 26: 994–1002.
  35. Huberman A.D., Niell C.M. What can mice tell us about how vision works? Trends Neurosci. 2011. 34(9): 464–473.
  36. Idzhilova O.S., Smirnova G.R., Petrovskaya L.E., Kolotova D.A., Ostrovsky M.A., Malyshev A.Y. Cationic channelrhodopsin from the alga platymonas subcordiformis as a promising optogenetic tool. Biochemistry. (Mosc). 2022. 87(11): 1327–1334.
  37. Jehee J.F.M., Ling S., Swisher J.D., van Bergen R.S., Tong F. Perceptual Learning Selectively Refines Orientation Representations in Early Visual Cortex. J. Neurosci. 2012. 32(47): 16747.
  38. Jeong Y., Cho H.-Y., Kim M., Oh J.-P., Kang M.S., Yoo M., Lee H.-S., Han J.-H. Synaptic plasticity-dependent competition rule influences memory formation. Nat. Commun. 2021. 12(1): 3915.
  39. Jia K., Zamboni E., Kemper V., Rua C., Reis Goncalves N., Ka Tsun Ng A., Rodgers C.T., Williams G., Goebel R., Kourtzi Z. Article Recurrent Processing Drives Perceptual Plasticity. Curr. Biol. 2020. 30 4177–4187.e4.
  40. Kasamatsu T., Pettigrew J.D. Depletion of Brain Catecholamines: Failure of Ocular Dominance Shift After Monocular Occlusion in Kittens. Science (80-. ). 1976. 194(4261): 206–209.
  41. Kuhnt U., Kleschevnikov A.M., Voronin L.L. Long term enhancement of synaptic transmission in the hippocampus after tetanization of single neurons by short intracellular current pulses. Neurosci. Res. Commun. 1994. 14(2): 115–123.
  42. Kuo M.C., Dringenberg H.C. Short-term (2 to 5 h) dark exposure lowers long-term potentiation (LTP) induction threshold in rat primary visual cortex. Brain Res. 2009. 1276 58–66.
  43. Levi D.M., Li R.W. Perceptual learning as a potential treatment for amblyopia: A mini-review. Vision Res. 2009. 49(21): 2535–2549.
  44. Li W., Piëch V., Gilbert C.D. Learning to Link Visual Contours. Neuron. 2008. 57(3): 442–451.
  45. Lynch G.S., Dunwiddie T., Gribkoff V. Heterosynaptic depression: a postsynaptic correlate of long-term potentiation. Nature. 1977. 266(5604): 737–739.
  46. Malenka R.C., Bear M.F. LTP and LTD: an embarrassment of riches. Neuron. 2004. 44(1): 5–21.
  47. Malyshev A., Bravarenko N., Balaban P. Dependence of synaptic facilitation postsynaptically induced in snail neurones on season and serotonin level. Neuroreport. 1997. 8(5): 1179–1182.
  48. Martin S.J., Grimwood P.D., Morris R.G. Synaptic plasticity and memory: an evaluation of the hypothesis. Annu. Rev. Neurosci. 2000. 23: 649–711.
  49. Maurer D. Visual development. The Cambridge Handbook of Infant Development: Brain, Behavior, and Cultural Context. 2020. 157–185
  50. Maya Vetencourt J.F., Sale A., Viegi A., Baroncelli L., De Pasquale R., O’Leary O.F., Castrén E., Maffei L. The antidepressant fluoxetine restores plasticity in the adult visual cortex. Science. 2008. 320(5874): 385–388.
  51. McLean J., Palmer L.A. Plasticity of neuronal response properties in adult cat striate cortex. Vis. Neurosci. 1998. 15(1): 177–196.
  52. Meliza C.D., Dan Y. Receptive-Field Modification in Rat Visual Cortex Induced by Paired Visual Stimulation and Single-Cell Spiking. Neuron. 2006. 49 (2): 183–189.
  53. Miller K.D. Synaptic economics: competition and cooperation in synaptic plasticity. Neuron. 1996. 17(3): 371–374.
  54. Milner P. A brief history of the Hebbian learning rule. Can. Psychol. 2003. 44(1): 5–9.
  55. Montemurro M.A., Panzeri S. Optimal tuning widths in population coding of periodic variables. Neural Comput. 2006. 18(7): 1555–1576.
  56. Montgomery D.P., Hayden D.J., Chaloner F.A., Cooke S.F., Bear M.F. Stimulus-Selective Response Plasticity in Primary Visual Cortex: Progress and Puzzles. Front Neural Circuits. 2022. 15:815554.
  57. Morishita H., Miwa J.M., Heintz N., Hensch T.K. Lynx1, a cholinergic brake, limits plasticity in adult visual cortex. Science. 2010. 330(6008): 1238–1240.
  58. Pawlak V., Greenberg D.S., Sprekeler H., Gerstner W., Kerr J.N.D. Changing the responses of cortical neurons from sub- to suprathreshold using single spikes in vivo. Elife. 2013. 2 e00012.
  59. Poort J., Khan A.G., Pachitariu M., Nemri A., Orsolic I., Krupic J., Bauza M., Sahani M., Keller G.B., Mrsic-Flogel T.D., Hofer S.B. Learning Enhances Sensory and Multiple Non-sensory Representations in Primary Visual Cortex. Neuron. 2015. 86(6): 1478–1490.
  60. Poort J., Wilmes K.A., Blot A., Chadwick A., Sahani M., Clopath C., Mrsic-Flogel T.D., Hofer S.B., Khan A.G. Learning and attention increase visual response selectivity through distinct mechanisms. Neuron. 2022. 110(4): 686–697.e6.
  61. Pourtois G., Rauss K.S., Vuilleumier P., Schwartz S. Effects of perceptual learning on primary visual cortex activity in humans. Vision Res. 2008. 48(1): 55–62.
  62. Priebe N.J., McGee A.W. Mouse vision as a gateway for understanding how experience shapes neural circuits. Front Neural Circuits. 2014. 8:123.
  63. Prusky G.T., West P.W.R., Douglas R.M. Behavioral assessment of visual acuity in mice and rats. Vision Res. 2000. 40(16): 2201–2209.
  64. Raiguel S., Vogels R., Mysore S.G., Orban G.A. Learning to see the difference specifically alters the most informative V4 neurons. J. Neurosci. 2006. 26(24): 6589–6602.
  65. Rossi L.F., Harris K.D., Carandini M. Spatial connectivity matches direction selectivity in visual cortex. Nature. 2020. 588(7839): 648–652.
  66. Sale A., De Pasquale R., Bonaccorsi J., Pietra G., Olivieri D., Berardi N., Maffei L. Visual perceptual learning induces long-term potentiation in the visual cortex. Neuroscience. 2011. 172: 219–225.
  67. Schoups A., Vogels R., Qian N., Orban G. Practising orientation identification improves orientation coding in V1 neurons. Nature. 2001. 412(6846): 549–553.
  68. Seitz A.R. Perceptual learning. Curr. Biol. 2017. 27(13): 631–636.
  69. Shouval H.Z., Wang S.S.H., Wittenberg G.M. Spike timing dependent plasticity: A consequence of more fundamental learning rules. Front. Comput. Neurosci. 2010. 4 1601.
  70. Simonova N.A., Volgushev M.A., Malyshev A.Y. Enhanced Non-Associative Long-Term Potentiation in Immature Granule Cells in the Dentate Gyrus of Adult Rats. Front. Synaptic Neurosci. 2022. 14 889947.
  71. Sjöström P.J., Turrigiano G.G., Nelson S.B. Rate, timing, and cooperativity jointly determine cortical synaptic plasticity. Neuron. 2001. 32(6): 1149–1164.
  72. Smirnov I. V, Malyshev A.Y. Paired optogenetic and visual stimulation can change the orientation selectivity of visual cortex neurons. Biochem. Biophys. Res. Commun. 2023. 646 63–69.
  73. Smirnov I. V, Osipova A.A., Smirnova M.P., Borodinova A.A., Volgushev M.A., Malyshev A.Y. Plasticity of response properties of mouse visual cortex neurons induced by optogenetic tetanization in vivo. Curr Issues Mol Biol. 2024. 46(4): 3294–3312.
  74. Stark E., Koos T., Buzsáki G. Diode probes for spatiotemporal optical control of multiple neurons in freely moving animals. J. Neurophysiol. 2012. 108(1): 349–363.
  75. Takeuchi T., Duszkiewicz A.J., Morris R.G.M. The synaptic plasticity and memory hypothesis: Encoding, storage and persistence. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 2013. 369(1633): 20130288.
  76. Tsien J.Z. Linking Hebb’s coincidence-detection to memory formation. Curr. Opin. Neurobiol. 2000. 10(2): 266–273.
  77. Volgushev M., Voronin L.L., Chistiakova M., Singer W. Relations Between Long-term Synaptic Modifications and Paired-pulse Interactions in the Rat Neocortex. Eur. J. Neurosci. 1997. 9(8): 1656–1665.
  78. Wang H., Peca J., Matsuzaki M., Matsuzaki K., Noguchi J., Qiu L., Wang D., Zhang F., Boyden E., Deisseroth K., Kasai H., Hall W.C., Feng G., Augustine G.J. High-speed mapping of synaptic connectivity using photostimulation in Channelrhodopsin-2 transgenic mice. Proc. Natl. Acad. Sci. U. S. A. 2007. 104(19): 8143–8148.
  79. Wiesel T.N., Hubel D.H. Single-cell responses in striate cortex of kittens deprived of vision in one eye. J. Neurophysiol. 1963. 26: 1003–1017.
  80. Yan Y., Rasch M.J., Chen M., Xiang X., Huang M., Wu S., Li W. Perceptual training continuously refines neuronal population codes in primary visual cortex. Nat. Neurosci. 2014. 17(10): 1380–1387.
  81. Yang T., Maunsell J.H.R. The effect of perceptual learning on neuronal responses in monkey visual area V4. J. Neurosci. 2004. 24(7): 1617–1626.
  82. Yao H., Dan Y. Stimulus Timing-Dependent Plasticity in Cortical Processing of Orientation. Neuron. 2001. 32(2): 315–323.
  83. Zenke F., Hennequin G., Gerstner W. Synaptic plasticity in neural networks needs homeostasis with a fast rate detector. PLoS Comput. Biol. 2013. 9 (11): e1003330.

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Stimulus-dependent learning. (a) – experimental setup. A mouse is presented with a visual stimulus – a grid moving across a monitor screen. Stimulus-induced evoked potential (EP) is recorded in the primary visual cortex, and a piezoelectric sensor connected to the animal’s paw records involuntary movements that occur in response to the visual stimulus, the so-called vidgeting. (б) – when the same visual stimulus is shown every day, the amplitude of vidgeting in response to this stimulus gradually decreases, while the amplitude of the evoked potential recorded from the 4th layer of the visual cortex, on the contrary, increases (в) – which is called stimulus-selective response plasticity (SRP) in the English-language literature. From (Montgomery et al., 2022), with modifications.

下载 (147KB)
3. Fig. 2. Experiment on changing the receptive properties of a single neuron in the visual cortex. (a) – in the middle – the scheme of the experiment: vertical and horizontal moving bars were shown to the animal on the screen, while the response in the form of action potentials was recorded in the pyramidal neurons of the primary visual cortex using the juxtacellular recording method. Juxtacellular recording is a type of extracellular recording performed using a glass pipette (top left). The pipette is positioned so close to the body of the neuron being recorded that it becomes possible to iontophoretically fill the neuron with a vital dye (most often neurobiotin) with subsequent morphological identification of the cell (see the example in Fig. 3). In addition, a thin optical fiber is inserted into the glass pipette (electrode), which allows optogenetic stimulation of the cell expressing channelrhodopsin. In this experiment, optogenetic stimulation of the neuron (pairing) was performed during the demonstration of a stimulus of non-optimal orientation. After 200 such pairings, the amplitude of the response to the stimulus of this orientation increased and became greater than the response to the stimulus of the perpendicular orientation. (б) – poststimulus histograms of neuron responses to a stimulus of non-optimal (left) and optimal (right) orientations before combinations, (в) – after combinations. Based on (Smirnov, Malyshev, 2023).

下载 (188KB)
4. Fig. 3. Plasticity of receptive properties of neurons in the visual cortex of mice induced by optogenetic tetanization in vivo. In this series of experiments, mice were presented with a visual stimulus in the form of gratings moving across the screen in 12 different directions, and the resulting action potentials were recorded juxtacellularly. A typical response of a simple cell is shown in the form of regular bursts of action potentials with a burst frequency corresponding to the frequency of the grating. It was found that optogenetically induced high-frequency action potential bursts in neurons (optogenetic tetanization) lead to a change in the tuning curve (graph in polar coordinates on the bottom right). After tetanization (blue curve), neurons become less tuned – the response to the optimal orientation decreases, while to some non-optimal ones it increases. On the bottom left is an example of morphological identification of a neuron after an electrophysiological experiment in the visual cortex of a mouse, whose neurons express the fast channelrhodopsin oChief with the fluorescent protein Venus. According to (Smirnov et al., 2024).

下载 (240KB)

版权所有 © Russian Academy of Sciences, 2025