Energy reserves and some related population characteristics of the Common frog (Rana temporaria) from the opposite parts of the range

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

For the first time, a comprehensive assessment of energy resources (lipids and glycogen) in tissues and organs, and some related population characteristics was carried out using the Common frog (Rana temporaria) from the eastern periphery of its distribution range (suburbs of Perm City, Pre-Ural region).The traditional concept of the seasonal dynamics of lipid and glycogen reserves, their partitioning between the needs of growth, reproduction and survival during overwintering, all obtained using western populations, was shown to be not fully applicable to individuals from other parts of the range, even with the same duration of the activity season. The values of the relative masses of storage organs (liver and fat bodies), the content of glycogen and lipids therein, the body sizes of individuals and their reproductive characteristics revealed in the study population can serve as the basis for studying the geographic variability of these interrelated features in the eastern part of the range.

Texto integral

Acesso é fechado

Sobre autores

N. Bulakhova

Institute of the Biological Problems of the North, Far East Branch, Russian Academy of Sciences

Autor responsável pela correspondência
Email: sigma44@mail.ru
Rússia, Magadan, 685000

K. Shishikina

Institute of the Biological Problems of the North, Far East Branch, Russian Academy of Sciences

Email: korotkova.kseniya@bk.ru
Rússia, Magadan, 685000

A. Semukhina

Perm State National Research University

Email: anyuta.semuhina@yandex.ru
Rússia, Perm, 614990

Bibliografia

  1. Ануфриев В. М., Бобрецов А. В., 1996. Амфибии и рептилии // Фауна европейского Северо-Востока России. Т. IV. Санкт-Петербург: Наука. 130 с.
  2. Берман Д. И., Булахова Н. А., 2019. Граница на заморе, или Что не пускает травяную лягушку из Европы в Азию // Природа. № 7. С. 12–26.
  3. Булахова Н. А., Шишикина К. И., 2024. Изменчивость количества лимфы в подкожных синусах у травяной лягушки (Rana temporaria) // Зоологический журнал. Т. 103. № 5. С. 155–163.
  4. Вершинин В. Л., 1983. Видовой состав и биологические особенности амфибий ряда промышленных городов Урала. Дис. … канд. биол. наук. Свердловск. 201 с.
  5. Вершинин В. Л., 1997. Экологические особенности популяций амфибий урбанизированных территорий. Дис. … докт. биол. наук. Екатеринбург. 283 с.
  6. Вершинин В. Л., 2007. Амфибии и рептилии Урала. Екатеринбург: УрО РАН. 170 с.
  7. Гаранин В. И., 1983. Земноводные и пресмыкающиеся Волжско-Камского края. М.: Наука. 175 с.
  8. Ищенко В. Г., 1978. Динамический полиморфизм бурых лягушек фауны СССР. М.: Наука. 148 с.
  9. Кабардина Ю. А., 2004. Локальная и географическая изменчивость темпов роста, морфометрических признаков и репродуктивных характеристик в процессе постметаморфозного роста бурых лягушек (Rапа temporaria L., R. arvalis Nilss.). Автореф. дис. … канд. биол. наук. Москва. 252 с.
  10. Кутенков А. П., 1991. Динамика размеров печени, жировых тел и гонад у травяных (Rana temporaria) и остромордых (R. arvalis) лягушек // Экология наземных позвоночных. Петрозаводск: Карельский научный центр АН СССР Институт биологии. С. 14–24.
  11. Кутенков А. П., 2009. Экология травяной лягушки (Rana temporaria L., 1758) на Северо-западе России. Петрозаводск: ПетрГУ. С. 140.
  12. Лада Г. А., 2012. Бесхвостые земноводные (Anura) Русской равнины: изменчивость, видообразование, ареалы, проблемы охраны. Автореф. дис. … докт. биол. наук. Казань. 47 с.
  13. Литвинов Н. А., Четанов Н. А., Ганщук С. В., 2023. Амфибии и рептилии Камского Предуралья. Пермь: Астер Диджитал. 242 с.
  14. Ляпков С. М., 2021. Популяционная экология остромордой и травяной лягушек. Географическая изменчивость возрастного состава, постметаморфозного роста, размеров и репродуктивных характеристик. М.: Товарищество научных изданий КМК. 219 с.
  15. Ляпков С. М., Корнилова М. Б., Северцов А. С., 2002.Структура изменчивости репродуктивных характеристик травяной лягушки (Rana temporaria L.) и их взаимосвязь с размерами и возрастом // Зоологический журнал. Т. 81. № 6. С. 719–733.
  16. Северин С. Е., Соловьева Г. А., 1989. Практикум по биохимии. М.: Изд-во МГУ. 509 с.
  17. Стариков В. П., Матковский А. В., 2011. Распространение и некоторые стороны экологии травяной лягушки (Rana temporaria L., 1758) севера западной Сибири // Вестник КрасГАУ. № 12. С. 126–129.
  18. Теплова Е. Н., 1957. Амфибии и рептилии Печоро-Илычского заповедника // Труды Печоро-Илычского заповедника. № 6. С. 116–129.
  19. Терентьев П. В., 1950. Лягушка: Учебное пособие для студентов биологических факультетов университетов. М.: Советская наука. С. 345.
  20. Топоркова Л. Я., Зубарева Э. Л., 1965. Материалы по экологии травяной лягушки на Полярном Урале // Экология позвоночных животных Крайнего Севера. Сер. Труды Института биологии УФ АН СССР. Свердловск. Вып. 38. С. 189–194.
  21. Фомичев С. Н., 2004. Экология островных популяций бурых лягушек. Автореф. дис. … канд. биол. наук. Петрозаводск. 188 с.
  22. Хазиева С. М., Никольская В. И., Козлова Т. И., 1985. Сезонная ритмика у травяной и остромордой лягушек в Камском Приуралье // Вопросы герпетологии: автореф. докл. 6 Всесоюзной герпетол. конф. Л.: Наука. С. 217.
  23. Шварц С. С., Ищенко В. Г., 1971. Пути приспособления наземных позвоночных животных к условиям существования в Субарктике. Т. 3. Земноводные. Свердловск: ИЭРиЖ УФАН СССР. 60 с.
  24. Юшков Р. А., Воронов Г. А., 1994. Амфибии и рептилии Пермской области: Предварительный кадастр. Пермь: ПГУ. 158 с.
  25. Andersson M. B., 1994. Sexual selection. Princeton: Princeton University Press. 624 p.
  26. Augert D., 1992. Variations de la structure deÂmographique de populations voisisnes de grenouilles rousses (Rana temporaria L.). PhD thesis, University of Lyon, France.
  27. Bea F., Pascual Carvajal M. M., 1986. Estudio de los ocelos en lascamptonitas de la Sierra de Gredos, España central // Boletín geológico y minero. V. 97. № 2. P. 94–110.
  28. Bleibtreu M., 1911. Weitere untersuchungen uber das verhalten des glykogens im eierstock der Rana fusca // Pflügers Archiv European Journal of Physiology. V. 141. № 4. 328–342.
  29. Boutilier R. G., 2001. Mechanisms of metabolic defense against hypoxia in hibernating frogs // Respiration Physiology. V. 128. № 3. P. 365–377.
  30. Boutilier R. G., Donohoe P. H., Tattersall G. J., West T. G., 1997. Hypometabolic homeostasis in overwintering aquatic amphibians // Journal of Experimental Biology. V. 200. P. 387–400.
  31. Bradford D. F., 1983. Winterkill oxygen relations and energy metabolism of a submerged dormant amphibian, Rana muscosa // Ecology. V. 64. P. 1171–1183.
  32. Bradford D. F., 1984. Water and osmotic balance in overwintering tadpoles and frogs, Rana muscosa // Physiological Zoology. V. 57. № 4. P. 474–480.
  33. Bulakhova N., Shishikina K., 2022. Pre-hibernation energy reserves and their consumption during freezing in the moor frog Rana arvalis in Siberia // European Zoological Journal. V. 89. № 1. P. 556–567.
  34. Canal J., Delattre J., Girard M. L., 1972. Acquisitions nouvelles dans le dosage des lipides totaux du serum: description d’une methode nephelemetrique. Part 1. Technique manuelle // Annales de Biologie Clinique. V. 30. P. 325–332.
  35. Chen W., Wang X., Fan X., 2013. Do anurans living in higher altitudes have higher pre-hibernation energy storage? Investigations from a high-altitude frog // Herpetological Journal. V. 23. № 1. P. 45–49.
  36. Christiansen J., Penney D., 1973. Anaerobic glycolysis and lactic acid accumulation in cold submerged Rana pipiens // Journal of Comparative Physiology. V. 87. № 3. P. 237–245.
  37. Costanzo J. P., Amaral M. C.F., Rosendale A. J., Lee R. E. Jr., 2013. Hibernation physiology, freezing adaptation and extreme freeze tolerance in a northern population of the wood frog // Journal of Experimental Biology. V. 216. № 18. P. 3461–3473.
  38. Crump M. L., 1974. Reproductive strategies in a tropical anuran community // Miscellaneous publication (University of Kansas. Museum of Natural History). № 61. P. 1–68.
  39. Cummins C.P., 1986. Temporal and Spatial Variation in Egg Size and Fecundity in Rana temporaria L. // The Journal of Animal Ecology. V. 55. № 2. P. 303–316.
  40. Duellman W. E., Trueb L., 1985. Biology of Amphibians. NewYork, McGraw-Hill. 670 p.
  41. Elmberg J., 1987. Random mating in a boreal population of European common frogs Rana temporaria // Ecography. V. 10. № 3. P. 193–195.
  42. Elmberg J., 1991. Ovarian cyclicity and fecundity in boreal common frogs Rana temporaria L. along a climatic gradient // Functional Ecology. № 5. P. 340–350.
  43. Elmberg J., Lundberg P., 1991. Intraspecific variation in calling, time allocation and energy reserves in breeding male common frogs Rana temporaria // Annales Zoologici Fennici. V. 28. № 1. P. 23–29.
  44. Feder M. E., Burggren W. W., 1992. Environmental physiology of the amphibians. Chicago: University of Chicago Press. 646 p.
  45. Fitzpatrick L. C., 1976. Life history patterns of storage and utilization of lipids for energy in amphibians // American Zoologist. V. 16. № 4. P. 725–732.
  46. Gibbons M. M., McCarthy T.K., 1986. The reproductive output of frogs Rana temporaria (L.) with particular reference to body size and age // Journal of Zoology. V. 209. № 4. P. 579–593.
  47. Gollmann B., Borkin L., Grossenbacher K., Weddeling K., 2014. Rana temporaria Linnaeus 1758 – Grasfrosch. – In: Grossenbacher K. (Hrsg.). Handbuch der Reptilien und Amphibien Europas. Band 5/III A: Froschlurche (Anura) III A (Ranidae I). Wiebelsheim: AULA-Verlag. S. 305–437.
  48. Guarino F. M., Di Giа I., Sindaco R., 2008. Age structure in a declining population of Rana temporaria from northern Italy // Acta Zoologica Academiae Scientiarum Hungaricae. V. 54. № 1. P. 99–112.
  49. Hjernquist M. B., Soderman F., Jönsson K. I., Herczeg G., Laurila A., Merilä J., 2012. Seasonality determines patterns of growth and age structure over a geographic gradient in an ectothermic vertebrate // Oecologia. V. 170. P. 641–649.
  50. Ishchenko V. G., 1996. Problems of demography and declining populations of some Euroasiatic brown frogs // Russian Journal of Herpetology. V. 3. № 2. P. 143–151.
  51. Ishchenko V. G., 2005. Growth of brown frogs of fauna of Russia: Some problems of study of growth in Amphibians // Herpetologia Petropolitana: Proceedings of the 12th Ordinary General Meeting of the Societas Europaea Herpetologica. St. Petersburg–Moscow. P. 153–157.
  52. Jönsson K. I., Herczeg G., O’Hara R.B., Soederman F., ter Schure A. F.H., Larsson P., Merila J., 2009. Sexual patterns of prebreeding energy reserves in the common frog Rana temporaria along a latitudinal gradient // Ecography. V. 32. № 5. P. 831–839.
  53. Jørgensen C. B., 1981. Ovarian cycle in a temperate zone frog, Rana temporaria, with special reference to the factors determining the number and size of eggs // Journal of Zoology. V. 195. № 4. P. 449–458.
  54. Jørgensen C. B., 1992. Growth and reproduction, 1992 // Environmental physiology of the amphibians. Feder M. E., Burggren W. W. (ed.). University of Chicago Press. P. 439–466.
  55. Kato K., 1910. Über das Verhalten des Glykogenes im Eierstocke der Frösche zu den verschiedenen Jahreszeiten // Pflügers Archiv European Journal of Physiology. V. 132. P. 545–579.
  56. Koskela P., Pasanen S., 1975. The Reproductive Biology of the Female Common Frog, Rana temporaria L., in Northern Finland // Aquilo, Series Zoologica. V. 16. P. 1–12.
  57. Krawczyk S., 1971. Changes in the lipid and water content in some organs of the common frog (Rana temporaria L.) in the annual cycle // Acta Biologica Cracoviensia. Series Zoologia. V. 14. № 2. P. 211–237.
  58. Lardner B., Loman J., 2003. Growth or reproduction? Resource allocation by female frogs Rana temporaria // Oecologia. V. 137. P. 541–546.
  59. Laugen A. T., Laurila A., Jönsson, K.I., Söderman F., Merilä J., 2005. Do common frogs (Rana temporaria) follow Bergman’s rule? // Evolutionary Ecology Research. V. 7. № 5. P. 717–731.
  60. Laugen A. T., Laurila A., Räsänen K., Merilä J., 2003. Latitudinal countergradient variation in the common frog (Rana temporaria) developmental rates – evidence for local adaptation // Journal of Evolutionary Biology. V. 16. № 5. P. 996–1005.
  61. Liao W., Lu X., 2011. Adult body size = f (initial size + growth rate x age): explaining the proximate cause of Bergman’s cline in a toad along altitudinal gradients // Evolutionary Ecology. V. 25. P. 1–12.
  62. Liao W. B., Luo Y., Lou S. L., Lu D., Jehle R., 2016. Geographic variation in life-history traits: growth season affects age structure, egg size and clutch size in Andrew’s toad (Bufo andrewsi) // Frontiers in Zoology. V. 13. № 6. P. 1–9.
  63. Miaud C., Guyetant R., 1998. Plasticite et selection sur les traits de vie d’un organisme a cycle vital complexe, la grenouille rousse Rana temporaria (Amphibien: Anoure) // Bulletin de la Société zoologique de France. V. 123. № 4. P. 325–344.
  64. Miaud C., Guyetant R., Elmberg J., 1999. Variations in life-history traits in the common frog Rana temporaria (Amphibia: Anura): a literature review and new data from the French Alps // Journal of Zoology. V. 249. № 1. P. 61–73.
  65. Miaud C., Merilä J., 2000. Local adaptation or environmental induction? Causes of population differentiation in alpine amphibians // Biota. V. 2. P. 31–50.
  66. Monnet J. M., Cherry M. I., 2002: Sexual size dimorphism in anurans // Proceedings of the Royal Society of London. Series B: Biological Sciences. V. 269. № 1507. P. 2301–2307.
  67. Pasanen S., Koskela P., 1974. Seasonal and age variation in the metabolism of the common frog, Rana temporaria L., in northern Finland // Comparative Biochemistry and Physiology. V. 47. № 2. P. 635–654.
  68. Patrelle C., Hjernquist M. B., Laurila A., Soderman F., Merila J., 2012. Sex differences in age structure, growth rate and body size of common frogs Rana temporaria in the subarctic // Polar Biology. V. 35. P. 1505–1513.
  69. Pinder A. W., Storey K. B., Ultsch G. R., 1992. Estivation and hibernation. In: Feder ME and Burggren W. W. (eds.) Environmental Physiology of the Amphibians. Illinois, University of Chicago Press. P. 250–274.
  70. R Core Team, 2023. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing. Vienna. Austria. https://www.R-project.org.
  71. Ryser J., 1988. Determination of growth and maturation in the common frog, Rana temporaria, by skeletochronology // Journal of Zoology. V. 216. № 4. P. 673–685.
  72. Ryser J., 1996. Comparative life histories of a low- and a high-elevation population of the common frog Rana temporaria // Amphibia–Reptilia. V. 17. № 3. P. 183– 195.
  73. Shine R., 1979. Sexual selection and sexual dimorphism in the Amphibia // Copeia. V. 1979. № 2. P. 297–306.
  74. Sinsch U., Pelster B., Ludwig G., 2015. Large-scale variation of size and age-related life-history traits in the common frog: A sensitive test case for macroecological rules // Journal of Zoology. V. 297. P. 32–43.
  75. Smith C. L., 1950. Seasonal changes in blood sugar, fat body, liver glycogen, and gonads in the common frog, Rana temporaria // Journal of Experimental Biology. V. 26. № 4. P. 412–429.
  76. Tarnoky K., Nagy S., 1963. Spectrophotometric determination of glycogen with o-toluidine // Clinica Chimica Acta. V. 8. P. 627–628.
  77. Tattersall G. J., Ultsch G. R., 2008. Physiological ecology of aquatic overwintering in ranid frogs // Biological Reviews. V. 83. P. 119–140.
  78. Weddeling K., Bosbach G., Hachtel M., Sander U., Schmidt P., Tarkhnishvili D., 2003. Egg size versus clutch size: variation and trade-off in reproductive output of Rana dalmatina and R. temporaria in a pond near Bonn (Germany) // Herpetologia Petropolitana. Ananjeva N. and Tsinenko O. (eds), Herpetologica Petropolitana. Proc. of the 12th Ordinary General Meeting of the Societas Europaea Herpetologica, August 12–16, 2003. St. Petersburg. Russian Journal of Herpetology. P. 238–240.
  79. Wells K. D., 2007. The ecology and behavior of amphibians. University of Chicago Press. Chicago.
  80. Zamachowski W., 1966. Changes in the weight of the body of the common frog Rana temporaria L. during the period of hidernation // Acta Biologica Cracoviensia. Series Botanica. Cracow. № 11. P. 199–206.
  81. Zamora-Camacho F.J., Comas M., 2017. Greater reproductive investment, but shorter lifespan, in agrosystem than in natural-habitat toads // Peer J. V. 5. P. e3791.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Regression relationship between fecundity and body length of female grass frogs (Rana temporaria) in the Permian population.

Baixar (11KB)
3. Fig. 2. Seasonal variability of water content in tissues and organs of the grass frog (Rana temporaria) in the Permian population. Horizontal lines are median values, ends of vertical “whiskers” are minimum and maximum values, and dots are outliers. The ends of the brackets indicate the samples being compared, the significance of differences is given above the brackets: *p ≤ 0.05, **p ≤ 0.01, **** p < 0.0001.

Baixar (13KB)
4. Fig. 3. Changes in liver weight (A) and liver index (B) in the grass frog (Rana temporaria) in the Permian population during wintering. Significance of differences: ns - differences are not reliable, ***p ≤ 0.001; other designations as in Fig. 2.

Baixar (25KB)
5. Fig. 4. Lipid content in tissues and organs of the grass frog (Rana temporaria) in the Permian population in fall and spring: A - fat bodies, B - liver, C - muscles. See Fig. 2 for designations.

Baixar (30KB)
6. Fig. 5. Seasonal changes in glycogen content in liver (A) and muscle (B) in the grass frog (Rana temporaria) in the Permian population.

Baixar (27KB)
7. Fig. 6. Total stock of glycogen (A) and lipids (B) in organs and tissues (liver, fat bodies, muscles) of the grass frog (Rana temporaria) in the Permian population before and after wintering. Circles - females, squares - males, black fill - fall, white - spring. The number of points on the graph does not correspond to the number of studied individuals due to the coincidence of some values.

Baixar (22KB)
8. Fig. 7. Relationship between fecundity and female size in Permian (black dots) and Finnish (white dots, from: Koskela, Pasanen, 1975) populations of the grass frog (Rana temporaria). Gray fill is the set of individuals with the same body length from both populations, in which fecundity was compared (see text).

Baixar (20KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2025