Fatty acids significance in improvement athlete’s aerobic performance: review and prospects
- Authors: Lyudinina А.Y.1, Bushmanova E.A.1, Bojko Е.R.1
-
Affiliations:
- Department of Ecological and Medical Physiology, Institute of Physiology, Ural Branch, RAS
- Issue: Vol 50, No 3 (2024)
- Pages: 114-125
- Section: ОБЗОРЫ
- URL: https://gynecology.orscience.ru/0131-1646/article/view/664031
- DOI: https://doi.org/10.31857/S0131164624030095
- EDN: https://elibrary.ru/BUCGZJ
- ID: 664031
Cite item
Abstract
Fats are the second most important energy substrates after carbohydrates. They are actively used as energy substrate in skeletal and cardiac muscles during aerobic exercise. This review presents modern data about the effects of different exercise intensities on lipid metabolism, the profile of plasma fatty acids (FAs), and the rate of fat oxidation. FAs metabolism is chiefly determined by exercise intensities and diets of athletes. Mobilization and oxidation of FAs extension with the increase of duration and intensity exercise, and under cold conditions when fats are used for energy supply and thermoregulation. The essential and saturated FAs are the most labile to exercise. An interesting direction for future research would be a study of maximal fat oxidation as a new marker of aerobic performance (AP), since there are practically no literature resources on the contribution of different classes of FAs to the AР in elite athletes. In addition, there is no clear understanding of how FAs oxidation is regulated and limited in skeletal muscles during a high-intensity exercise, of the mechanisms of transport and utilization of different classes of FAs depending on diet and training status. Such understanding would allow us to conduct more thorough monitoring of the functional status of athletes, and design the training process suitable to aerobic loads.
Full Text

About the authors
А. Yu. Lyudinina
Department of Ecological and Medical Physiology, Institute of Physiology, Ural Branch, RAS
Author for correspondence.
Email: salu_06@inbox.ru
Russian Federation, Syktyvkar
E. A. Bushmanova
Department of Ecological and Medical Physiology, Institute of Physiology, Ural Branch, RAS
Email: salu_06@inbox.ru
Russian Federation, Syktyvkar
Е. R. Bojko
Department of Ecological and Medical Physiology, Institute of Physiology, Ural Branch, RAS
Email: salu_06@inbox.ru
Russian Federation, Syktyvkar
References
- Heikki R. Handbook of Sports Medicine and Science Cross Country Skiing. KIHUa Research Institute for Olympic Sports. Finland, 2003. 210 p.
- Popov D.V., Vinogradova O.L., Grigor’ev A.I. [Aerobnaya rabotosposobnost’ cheloveka] (Human Aerobic Capacity). Moscow: Nauka, 2013. 210 p.
- Sandbakk O., Holmberg H.C. A Reappraisal of Success Factors for Olympic Cross-Country Skiing // Int. J. Sports Physiol. Perform. 2014. V. 9. № 1. Р. 117.
- Helge J.W., Wu B.J., Willer M. et al. Training affects muscle phospholipid fatty acid composition in humans // J. Appl. Physiol. 2001. V. 90. № 2. Р. 670.
- Spriet L.L., Watt M.J. Regulatory mechanisms in the interaction between carbohydrate and lipid oxidation during exercise // Acta Physiol. Scand. 2003. V. 178. № 4. Р. 443.
- Randell R.K., Rollo I., Roberts T.J. et al. Maximal Fat Oxidation Rates in an Athletic Population // Med. Sci. Sports Exerc. 2017. V. 49. № 1. P. 133.
- Hall A.U., Edin F., Pedersen A., Madsen K. Whole-body fat oxidation increases more by prior exercise than overnight fasting in elite endurance athletes // Appl. Physiol. Nutr. Metab. 2016. V. 41. № 4. P. 430.
- Bergstrom J., Hermansen L., Hultman E., Saltin B. Diet, muscle glycogen and physical performance // Acta Physiol. Scand. 1967. V. 71. № 2. Р. 140.
- Hermansen L., Hultman E., Saltin B. Muscle glycogen during prolonged severe exercise // Acta Physiol. Scand. 1967. V. 71. № 2. Р. 129.
- Ørtenblad N., Westerblad H., Nielsen J. Muscle glycogen stores and fatigue // J. Physiol. 2013. V. 591. № 18. Р. 4405.
- Noland R.C. Exercise and Regulation of Lipid Metabolism // Prog. Mol. Biol. Transl. Sci. 2015. V. 135. Р. 39.
- Maunder E., Daniel J., Kilding A.E. Contextualising Maximal Fat Oxidation During Exercise: Determinants and Normative Values // Front. Physiol. 2018. V. 9. P. 599.
- Purdom T., Kravitz L., Dokladny K., Mermier C. Understanding the factors that effect maximal fat oxidation // J. Int. Soc. Sports Nutr. 2018. V. 15. P. 3.
- Lyudinina A.Y., Bushmanova E.A., Varlamova N.G., Bojko E.R. Dietary and plasma blood α-linolenic acid as modulator of fat oxidation and predictor of aerobic performance // J. Int. Soc. Sports Nutr. 2020. V. 17. № 1. P. 57.
- Rømer T., Thunestvedt Hansen M., Frandsen J. et al. The relationship between peak fat oxidation and prolonged double-poling endurance exercise performance // Scand. J. Med. Sci. Sports. 2020. V. 30. № 11. Р. 2044.
- Tarnopolsky M.A., Rennie C.D., Robertshaw H.A. et al. Influence of endurance exercise training and sex on intramyocellular lipid and mitochondrial ultrastructure, substrate use, and mitochondrial enzyme activity // Am. J. Physiol. Regul. Integr. Comp. Physiol. 2007. V. 292. № 3. P. R1271.
- Lyudinina A.Yu., Ivankova G.E., Bojko E.R. Priority use of medium-chain fatty acids during high-intensity exercise in cross-country skiers // J. Int. Soc. Sports Nutr. 2018. V. 15. № 1. P. 57.
- [Fiziologo-biokhimicheskie mekhanizmy obespecheniya sportivnoi deyatel’nosti zimnikh tsiklicheskikh vidov sporta] (Physiological-Biochemical Mechanisms of Ensuring Sports Activity in Winter Cyclic Sports). Ed. Boiko E.R. Syktyvkar: Komi Respublikanskaya Tipografiya, 2019. 256 p.
- Dreyer H.C., Fujita S., Cadenas J.G. et al. Resistance exercise increases AMPK activity and reduces 4E-BP1 phosphorylation and protein synthesis in human skeletal muscle // J. Physiol. 2006. V. 576 (Pt. 2). Р. 613.
- Ruderman N.B., Park H., Kaushik V.K. AMPK as a metabolic switch in rat muscle, liver and adipose tissue after exercise // Acta Physiol. Scand. 2003. V. 178. № 4. Р. 435.
- Andersson A., Sjodin A., Hedman A. et al. Fatty acid profile of skeletal muscle phospholipids in trained and untrained young men // Am. J. Physiol. Endocrinol. Metab. 2000. V. 279. № 4. Р. E744.
- Gagnon D.D., Rintamäki H., Gagnon S.S. et al. Cold exposure enhances fat utilization but not non-esterified fatty acids, glycerol or catecholamines availability during submaximal walking and running // Front. Physiol. 2013. V. 4. P. 99.
- Lyudinina A.Yu. Comparative analysis of the fatty acid profile in the diet and blood of athletes and students // Human Physiology. 2022. V. 48. № 5. P. 563.
- Lippi G., Schena F., Salvagno G.L. et al. Comparison of the lipid profile and lipoprotein(a) between sedentary and highly trained subjects // Clin. Chem. Lab. Med. 2006. V. 44. № 3. Р. 322.
- Mougios V., Ring S., Petridou A., Nikolaidis M.G. Duration of coffee- and exercise-induced changes in the fatty acid profile of human serum // J. Appl. Physiol. 2003. V. 94. № 2. Р. 476.
- Kiens В., Helge W.J. Adaptation to a High Fat Diet / Nutrition in Sport // Ed. Maughan R.M. Blackwell Science Ltd, 2000. 202 р.
- Stellingwerff T., Boon H., Jonkers R.A. et al. Significant intramyocellular lipid use during prolonged cycling in endurance-trained males as assessed by three different methodologies // Am. J. Physiol. Endocrinol. Metab. 2007. V. 292. № 6. Р. E1715.
- Stelzer I., Kropfi J.M., Fuchs R. et al. Ultra-endurance exercise induces stress and inflammation and affects circulating cell function // Scand. J. Med. Sci. Sport. 2015. V. 25. № 5. P. e442.
- Karl J.P., Margolis L.M., Carrigan C.T. et al. Military training elicits marked increases in plasma metabolomic signatures of energy metabolism, lipolysis, fatty acid oxidation, and ketogenesis // Physiol. Rep. 2017. V. 5. № 17. P. e13407.
- Arab L. Biomarkers of Fat and Fatty Acid Intake // J. Nutr. 2003. V. 113. Suppl. 3(3). Р. 925S.
- Hodson L., Skeaff C.M., Fielding B.A. Fatty acid composition of adipose tissue and blood in humans and its use as a biomarker of dietary intake // Prog. Lipid Res. 2008. V. 47. № 5. P. 348.
- Calder P.C., Waitzberg D.L., Klek S., Martindale R.G. Lipids in Parenteral Nutrition: Biological Aspects // J. Parenter. Enteral Nutr. 2020. V. 44. Suppl. 1. Р. S21.
- Simopoulos A.P. The omega-6/omega-3 fatty acid ratio, genetic variation, and cardiovascular disease // Asia Pac. J. Clin. Nutr. 2008. V. 17. Suppl. 1. Р. 131.
- Marangonia F., Colomboa C., Martielloa A. et al. The fatty acid profiles in a drop of blood from a fingertip correlate with physiological, dietary and lifestyle parameters in volunteers // Prostaglandins Leukot. Essent. Fatty Acids. 2007. V. 76. № 2. P. 87.
- Carey R.A., Montag D. Exploring the relationship between gut microbiota and exercise: short-chain fatty acids and their role in metabolism // BMJ Open Sport Exerc. Med. 2021. V. 7. № 2. P. e000930.
- Mickleborough T.D. Omega-3 Polyunsaturated Fatty Acids in Physical Performance Optimization // Int. J. Sport Nutr. Exerc. Metab. 2013. V. 23. № 1. Р. 83.
- Zebrovska A., Mizia-Stec K., Mizia M. et al. Omega-3 fatty acids supplementation improves endothelial function and maximal oxygen uptake in endurance-trained athletes // Eur. J. Sport Sci. 2015. V. 15. № 4. Р. 305.
- Philpott J.D., Witard O.C., Galloway S.D.R. Applications of omega-3 polyunsaturated fatty acid supplementation for sport performance // Res. Sports Med. 2019. V. 27. № 2. Р. 219.
- Abramova T.F., Nikitina T.M., Kochetkova N.I. [Labil’nye komponenty massy tela-kriterii obshchei fizicheskoi podgotovlennosti i kontrolya tekushchei i dolgovremennoi adaptatsii k trenirovochnym nagruzkam: metodicheskie rekomendatsii] (Labile Components of Body Weight-Criteria for General Physical Fitness and Control of Current and Long-Term Adaptation to Training Loads: Methodological Recommendations). Moscow: Skaiprint, 2013. 132 p.
- Da Boit M., Hunter A.M., Gray S.R. Fit with good fat? The role of n-3 polyunsaturated fatty acids on exercise performance // Metabolism. 2017. V. 66. Р. 45.
- Peric R., Meucci M., Bourdon P.C., Nikolovski Z. Does the aerobic threshold correlate with the maximal fat oxidation rate in short stage treadmill tests? // J. Sports Med. Phys. Fitness. 2018. V. 58. № 10. Р. 1412.
- Amaro-Gahete F.J., Sanchez-Delgado G., Jurado-Fasoli L. et al. Assessment of maximal fat oxidation during exercise: A systematic review // Scand. J. Med. Sci. Sports. 2019. V. 29. № 7. Р. 910.
- Holloszy J.O. Biochemical adaptations in muscle. Effects of exercise on mitochondrial oxygen uptake and respiratory enzyme activity in skeletal muscle // J. Biol. Chem. 1967. V. 242. № 9. Р. 2278.
- Glancy B., Hartnell L.M., Malide D. et al. Mitochondrial reticulum for cellular energy distribution in muscle // Nature. 2015. V. 523. № 7562. Р. 617.
- San-Millán I., Brooks G.A. Assessment of Metabolic Flexibility by Means of Measuring Blood Lactate, Fat, and Carbohydrate Oxidation Responses to Exercise in Professional Endurance Athletes and Less-Fit Individuals // Sports Med. 2018. V. 48. № 2. P. 467.
- Lyudinina A.Yu., Bushmanova E.A., Loginova T.P. et al. The fat oxidation rate at rest and under exercise load "until exhaustion" in Nordic skiers // Sports Med. Res. Pract. 2018. V. 8. № 3. Р. 13.
- Ekblom B. Applied physiology of soccer // Sports Med. 1986. V. 3. № 1. Р. 50.
- Kim Y.B., Shulman G.I., Kahn B.B. Fatty acid infusion selectively impairs insulin action on Aktl and protein kinase С lambda/zeta but not on glycogen synthase kinase-3 // J. Biol. Chem. 2002. V. 277. № 36. P. 32915.
- Venables M.C., Achten J., Jeukendrup A.E. Determinants of fat oxidation during exercise in healthy men and women: a cross-sectional study // J. Appl. Physiol. 2005. V. 98. № 1. Р. 160.
- Achten J., Jeukendrup A.E. Maximal fat oxidation during exercise in trained men // Int. J. Sports Med. 2003. V. 24. № 8. P. 603.
- Jeppesen J., Kiens B. Regulation and limitations to fatty acid oxidation during exercise // J. Physiol. 2012. V. 590. № 5. P.1059.
- Solomon T.P., Sistrun S.N., Krishnan R.K. et al. Exercise and diet enhance fat oxidation and reduce insulin resistance in older obese adults // J. Appl. Physiol. 2008. V. 104. № 5. Р. 13.
- Ipavec-Levasseur S., Croci I., Choquette S. et al. Effect of 1-H moderate-intensity aerobic exerciseon intramyocellular lipids in obese men before and after a lifestyle intervention // Appl. Physiol. Nutr. Metab. 2015. V. 40. № 12. Р. 1262.
- Lyudinina A.Yu., Bushmanova E.A., Garnov I.O. et al. [Promising markers of physical and aerobic performance of athletes in cyclic sports, SpotMed-2021 / Proc. XVIth Int. Sci. Conf. on Current State and Prospects of Medicine in Elite Sports]. Moscow: Rossiiskaya Assotsiatsiya po Sportivnoi Meditsine i Reabilitatsii Bol’nykh i Invalidov, 2021. P. 76.
- Saunders P.U., Telford R.D., Pyne D.B. et al. Improved running economy in elite runners after 20 days of simulated moderate-altitude exposure // J. Appl. Physiol. 2004. V. 96. № 3. Р. 931.
- McGlory C., Galloway S.D., Hamilton D.L. et al. Temporal changes in human skeletal muscle and blood lipid composition with fish oil supplementation // Prostaglandins Leukot. Essent. Fatty Acids. 2014. V. 90. № 6. Р. 199.
Supplementary files
