Development of an Experimental Intracranial PDX Model of Human Glioblastoma in NSG Mice

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Acesso é pago ou somente para assinantes

Resumo

Development of an orthotopic intracranial model based on a human glioblastoma cell culture in immunodeficient mice is an important task both for studying the invasiveness and aggressiveness of tumor cell behavior, and for creating a reliable model to evaluate the efficacy of new drugs for glioblastoma therapy. In this study, a comparative analysis was conducted using a glioblastoma cell line (U87MG) and primary glioblastoma cells obtained from a patient (culture 022), following subcutaneous and orthotopic intracranial xenotransplantation into NSG immunodeficient mice. It was shown that in both groups of animals with orthotopic xenografts, the tumors grew both deep into the brain tissue and along the brain surface, while in the case of the primary culture 022, growth toward the ventricles was also observed. The non-cell-line-derived (primary) cells exhibited an epithelioid morphology, whereas U87MG cells showed a more sarcomatoid appearance. The U87MG cell line was tumorigenic in both locations. However, the primary culture 022 formed tumors only following intracranial, but not subcutaneous, xenotransplantation, indicating the neuro-specificity of this model. Therefore, it may serve as a more relevant glioblastoma model compared to the U87MG cell line-based model.

Sobre autores

N. Antipova

Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of Russian Academy of Sciences

Moscow, Russia

D. Bondarenko

Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of Russian Academy of Sciences

Moscow, Russia

D. Mazur

Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of Russian Academy of Sciences

Moscow, Russia

A. Isakova

Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of Russian Academy of Sciences; Lomonosov Moscow State University

Moscow, Russia; Moscow, Russia

M. Gasparian

Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of Russian Academy of Sciences

Moscow, Russia

O. Patsap

Federal Center for Brain and Neurotechnology of the Federal Medical and Biological Agency of Russia

Moscow, Russia

V. Pavlov

Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of Russian Academy of Sciences

Moscow, Russia

E. Mikhailov

Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of Russian Academy of Sciences

Moscow, Russia

N. Goryacheva

Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of Russian Academy of Sciences

Moscow, Russia

D. Rzhevsky

Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of Russian Academy of Sciences

Moscow, Russia

S. Semushina

Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of Russian Academy of Sciences

Moscow, Russia

D. Dolgikh

Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of Russian Academy of Sciences; Lomonosov Moscow State University

Moscow, Russia; Moscow, Russia

A. Murashev

Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of Russian Academy of Sciences

Moscow, Russia

A. Yagolovich

Lomonosov Moscow State University

Email: yagolovichav@my.msu.ru
Moscow, Russia

Bibliografia

  1. Das J.K., Das M. // Handbook of Animal Models and its Uses in Cancer Research. 2023. P. 503–526. https://doi.org/0.1007/978-981-19-3824-5_26
  2. Muldoon L.L., Alvarez J.I., Begley D.J., Boado R.J., Del Zoppo G.J., Doolittle N.D., Engelhardt B., Hallenbeck J.M., Lonser R.R., Ohlfest J.R., Prat A., Scarpa M., Smeyne R.J., Drewes L.R., Neuwelt E.A. // J. Cereb. Blood Flow Metab. 2013. V. 33. P. 13–21. https://doi.org/10.1038/jcbfm.2012.153
  3. Larionova T.D., Bastola S., Aksinina T.E., Anufrieva K.S., Wang J., Shender V.O., Andreev D.E., Kovalenko T.F., Arapidi G.P., Shnaider P.V., Kazakova A.N., Latyshev Y.A., Tatarskiy V.V., Shtil A.A., Moreau P., Giraud F., Li C., Wang Y., Rubtsova M.P., Dontsova O.A., Condro M., Ellingson B.M., Shakhparonov M.I., Kornblum H.I., Nakano I., Pavlyukov M.S. // Nat. Cell. Biol. 2022. V. 24. P. 1541– 1557. https://doi.org/10.1038/s41556-022-00994-w
  4. Jenkins R.B., Blair H., Ballman K.V., Giannini C., Arusell R.M., Law M., Flynn H., Passe S., Felten S., Brown P.D., Shaw E.G., Buckner J.C. // Cancer Res. 2006. V. 66. P. 9852–9861. https://doi.org/10.1158/0008-5472.CAN-06-1796
  5. Sanson M., Marie Y., Paris S., Idbaih A., Laffaire J., Ducray F., El Hallani S., Boisselier B., Mokhtari K., Hoang-Xuan K., Delattre J.Y. // J. Clin. Oncol. 2009. V. 27. P. 4150–4154. https://doi.org/10.1200/JCO.2009.21.9832
  6. Cohen A.L., Holmen S.L., Colman H. // Curr. Neurol. Neurosci. Rep. 2013. V. 13. P. 345. https://doi.org/10.1007/s11910-013-0345-4
  7. Xu C., Hou P., Li X., Xiao M., Zhang Z., Li Z., Xu J., Liu G., Tan Y., Fang C. // Cancer Biol. Med. 2024. P. 1–19. https://doi.org/10.20892/j.issn.2095-3941.2023.0510
  8. Aubry M., de Tayrac M., Etcheverry A., Clavreul A., Saikali S., Menei P., Mosser J. // Oncotarget. 2015. V. 6. P. 12094–12109. https://doi.org/10.18632/oncotarget.3297
  9. Freedman L.P., Gibson M.C., Ethier S.P., Soule H.R., Neve R.M., Reid Y.A. // Nat. Methods. 2015 V. 6. P. 493–497. https://doi.org/10.1038/nmeth.3403
  10. Vacas-Oleas, A. // J. Bacteriol. Parasitol. 2013. V. S1. № 01. https://doi.org/10.4172/scientificreports.609
  11. Isakova A.A., Artykov A.A., Plotnikova E.A., Trunova G.V., Khokhlova V.А., Pankratov A.A., Shuvalova M.L., Mazur D.V., Antipova N.V., Shakhparonov M.I., Dolgikh D.A., Kirpichnikov M.P., Gasparian M.E., Yagolovich A.V. // Int. J. Biol. Macromol. 2024. V. 255. P. 128096. https://doi.org/10.1016/j.ijbiomac.2023.128096
  12. Goryacheva N.A. // Biomedicine. 2024. V. 20. P. 35–37.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Russian Academy of Sciences, 2025