Halide Complexes [(2-Br-5-MePy)2ZnX2] (X = Cl, Br): Structure and Noncovalent Interactions in the Crystal Structure

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The heteroligand complexes [(2-Br-5-MePy)2ZnX2] (X = Cl (I), Br (II)) were prepared by the reaction of zinc(II) chloride or bromide with 2-bromo-5-methylpyridine and studied by X-ray diffraction (CCDC nos. 2204966 (I) and 2204967 (II)). The crystals of I and II contain Cl···Br and Br···Br halogen bonds, which connect the [MX2L2] moieties into supramolecular chains. The energies of these noncovalent interactions were estimated using quantum chemical calculations.

作者简介

M. Vershinin

Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia

Email: adonin@niic.nsc.ru
Россия, Новосибирск

A. Novikov

St. Petersburg State University, St. Petersburg, Russia; Peoples’ Friendship University of Russia, Moscow, Russia

Email: adonin@niic.nsc.ru
Россия, Санкт-Петербург; Россия, Москва

S. Adonin

Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia

编辑信件的主要联系方式.
Email: adonin@niic.nsc.ru
Россия, Новосибирск

参考

  1. Desiraju G.R., Ho P.S., Kloo L. et al. // Pure Appl. Chem. 2013. V. 85. P. 1711.
  2. Orlova A.V., Ahiadorme D.A., Laptinskaya T.V., Kononov L.O. // Russ. Chem. Bull. 2021. V. 70. P. 2214.
  3. Shestimerova T.A., Golubev N.A., Grigorieva A.V. // Russ. Chem. Bull. 2021. V. 70. P. 39.
  4. Isaev A.N. // Russ. J. Phys. Chem. A. 2019. V. 93. P. 2394.
  5. Novikov A.S., Gushchin A.L. // J. Struct. Chem. 2021. V. 62. P. 1325.
  6. Bartashevich E.V., Sobalev S.A., Matveychuk Y.V., Tsirelson V.G. // J. Struct. Chem. 2021. V. 62. P. 1607.
  7. Bokach N.A., Suslonov V.V., Eliseeva A.A. et al. // Cry-stEngComm. 2020. V. 22. P. 4180.
  8. Eliseeva A.A., Ivanov D.M., Novikov A.S. et al. // Dalton Trans. 2020. V. 49. P. 356.
  9. Farris P.C., Wall A.D., Chellali J.E. et al. // J. Coord. Chem. 2018. V. 71. P. 2487.
  10. Awwadi F.F., Turnbull M.M., Alwahsh M.I., Haddad S.F. // New J. Chem. 2018. V. 42. P. 10642.
  11. Awwadi F.F., Haddad S.F., Turnbull M.M. et al. // Cry-stEngComm. 2013. V. 15. P. 3111.
  12. Wu W.X., Wang H., Jin W.J. // CrystEngComm. 2020. V. 22. P. 5649.
  13. Sivchik V.V., Solomatina A.I., Chen Y.-T. et al. // Angew. Chem. Int. Ed. 2015. V. 54. P. 14057.
  14. Liu R., Gao Y.J., Jin W.J. // Acta Crystallogr. B. 2017. V. 73. P. 247.
  15. Katlenok E.A., Haukka M., Levin O.V. et al. // Chem. Eur. J. 2020. V. 26. P. 7692.
  16. Torubaev Y.V., Skabitsky I.V. // CrystEngComm. 2020. V. 22. P. 6661.
  17. Rozhkov A.V., Novikov A.S., Ivanov D.M. et al. // Cryst. Growth Des. 2018. V. 18. P. 3626.
  18. Kryukova M.A., Sapegin A.V., Novikov A.S. et al. // Crystals. 2020. V. 10. P. 371.
  19. Zelenkov L.E., Ivanov D.M., Avdontceva M.S. et al. // Z. Krist. Cryst. Mater. 2019. V. 234. P. 9.
  20. Novikov A.S., Ivanov D.M., Avdontceva M.S., Kukushkin V.Y. // CrystEngComm. 2017. V. 19. P. 2517.
  21. Torubaev Y.V., Skabitsky I.V. // Z. Krist. Cryst. Mater. 2020. V. 235. P. 599.
  22. Truong K.-N., Rautiainen J.M., Rissanen K., Puttreddy R. // Cryst. Growth Des. 2020. V. 20. P. 5330.
  23. Torubaev Y.V., Skabitskiy I.V., Pavlova A.V., Pasynskii A.A. // New J. Chem. 2017. V. 41. P. 3606.
  24. Shestimerova T.A., Yelavik N.A., Mironov A.V. et al. // Inorg. Chem. 2018. V. 57. P. 4077.
  25. Eich A., Köppe R., Roesky P.W., Feldmann C. // Eur. J. Inorg. Chem. 2019. P. 1292.
  26. Suslonov V.V., Soldatova N.S., Ivanov D.M. et al. // Cryst. Growth Des. 2021. V. 21. P. 5360.
  27. Soldatova N.S., Suslonov V.V., Kissler T.Y. et al. // Crystals. 2020. V. 10. P. 230.
  28. Aliyarova I.S., Ivanov D.M., Soldatova N.S. et al. // Cryst. Growth Des. 2021. V. 21. P. 1136.
  29. Soldatova N.S., Postnikov P.S., Suslonov V.V. et al. // Org. Chem. Front. 2020. V. 7. P. 2230.
  30. Hu C., Li Q., Englert U. // CrystEngComm. 2003. V. 5. P. 519.
  31. Wang A., Englert U. // Acta Crystallogr. C. 2017. V. 73. P. 803.
  32. Hu C., Kalf I., Englert U. // CrystEngComm. 2007. V. 9. P. 603.
  33. Zordan F., Brammer L. // Cryst. Growth Des. 2006. V. 6. P. 1374.
  34. Awwadi F.F., Alwahsh M.I., Turnbull M.M. et al. // Dalton Trans. 2021. V. 50. P. 4167.
  35. Puttreddy R., von Essen C., Rissanen K. // Eur. J. Inorg. Chem. 2018. P. 2393.
  36. Puttreddy R., von Essen C., Peuronen A. et al. // Cr-ystEngComm. 2018. V. 20. P. 1954.
  37. Vershinin M.A., Rakhmanova M.I., Novikov A.S. et al. // Molecules. 2021. V. 26. P. 3393.
  38. Sheldrick G.M. // Acta Crystallogr. C. 2015. V. 71. P. 3.
  39. Da Chai J., Head-Gordon M. // Phys. Chem. Chem. Phys. 2008. V. 10. P. 6615.
  40. Zhao Y., Truhlar D.G. // Theor. Chem. Acc. 2008. V. 120. P. 215.
  41. Barros C.L., de Oliveira P.J.P., Jorge F.E. et al. // Mol. Phys. 2010. V. 108. P. 1965.
  42. Bader R.F.W. // Chem. Rev. 1991. V. 91. P. 893.
  43. Lu T., Chen F. // J. Comput. Chem. 2012. V. 33. P. 580.
  44. Bondi A. // J. Phys. Chem. 1966. V. 70. P. 3006.
  45. Mantina M., Chamberlin A.C., Valero R. et al. // J. Phys. Chem. A. 2009. V. 113. P. 5806.
  46. Cavallo G., Metrangolo P., Milani R. et al. // Chem. Rev. 2016. V. 116. P. 2478.
  47. Kinzhalov M.A., Kashina M.V., Mikherdov A.S. et al. // Angew. Chem. Int. Ed. 2018. V. 57. P. 12785.
  48. Bartashevich E.V, Tsirelson V.G. // Russ. Chem. Rev. 2014. V. 83. P. 1181.

补充文件

附件文件
动作
1. JATS XML
2.

下载 (105KB)
3.

下载 (212KB)

版权所有 © М.А. Вершинин, А.С. Новиков, С.А. Адонин, 2023