Synthesis and X-ray Structures of Polymeric Calcium Carboxylates

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The reactions of calcium hydroxide with pivalic, 1-naphthoic, and 2-furancarboxylic acids afford the corresponding polymeric calcium carboxylates. Depending on the crystallization conditions, calcium pivalate is isolated as two different coordination polymers: [Ca3(Piv)6(DMF)2]n · 0.635nC6H6 · 0.365nDMF (I) and [Ca(Рiv)(H2O)2.333(DMF)0.666]n · nРiv·0.333H2O (II). The synthesized calcium 1-naphthoate contains coordinated water molecules [Сa(Naph)2(H2O)2]n (III), and calcium furoate [Ca(Fur)2]n (IV) contains no ancillary ligands. The structures of compounds I–IV are determined by X-ray diffraction (XRD) (CIF files CCDC nos. 2342790–2342793, respectively). The structures of compounds I–III are characterized by the 1D polymeric structure, and compound IV is the 3D polymer.

全文:

受限制的访问

作者简介

A. Samulionis

Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences

Email: sanikol@igic.ras.ru
俄罗斯联邦, Moscow

J. Voronina

Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences

Email: sanikol@igic.ras.ru
俄罗斯联邦, Moscow

S. Melnikov

Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences

Email: sanikol@igic.ras.ru
俄罗斯联邦, Moscow

A. Gavronova

Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences

Email: sanikol@igic.ras.ru
俄罗斯联邦, Moscow

D. Utepova

Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences

Email: sanikol@igic.ras.ru
俄罗斯联邦, Moscow

N. Gogoleva

Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences

Email: sanikol@igic.ras.ru
俄罗斯联邦, Moscow

A. Goloveshkin

Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences

Email: sanikol@igic.ras.ru
俄罗斯联邦, Moscow

D. Yambulatov

Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences

Email: sanikol@igic.ras.ru
俄罗斯联邦, Moscow

S. Nikolaevskii

Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences

编辑信件的主要联系方式.
Email: sanikol@igic.ras.ru
俄罗斯联邦, Moscow

M. Kiskin

Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences

Email: sanikol@igic.ras.ru
俄罗斯联邦, Moscow

I. Eremenko

Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences

Email: sanikol@igic.ras.ru
俄罗斯联邦, Moscow

参考

  1. Bennett T., Geue N., Timco G. et al. // Chem. Eur. J. 2024. V. 30. P. e202400432.
  2. Darii M., Leusen J.V., Kravtsov V.Ch. et al. // Cryst. Growth Des. 2023. V. 23. P. 6944.
  3. Pavlov D.I., Yu X., Ryadun A.A. et al. // Food Chem. 2024. V. 445. P. 138747. https://doi.org/10.1016/j.foodchem.2024.138747;
  4. Lysova A.A., Samsonenko D.G., Dorovatovskii P.V. et al. // J. Am. Chem. Soc. 2019. V. 141. P. 17260.
  5. Bondarenko G.N., Ganina O.G., Lysova A.A. et al. // J. CO2 Util. 2021. V. 53. P. 101718.
  6. Lysova A.A., Samsonenko D.G., Kovalenko K.A. et al. // Angew. Chem. Int. Ed. 2020. V. 59. P. 20561.
  7. Podgornii D., Leusen J.V., Kravtsov V.Ch. et al. // CrystEngComm. 2021. V. 23. P. 153.
  8. Alotaibi R., Fowler J.M., Lockyer S.J. et al. // Angew. Chem. Int. Ed. 2021. V. 133. P. 9575.
  9. Bazhina E.S., Gogoleva N.V., Zorina-Tikhonova E.N. et al. // J. Struct. Chem. 2019. V. 60. P. 855. https://doi.org/10.1134/S0022476619060015
  10. Sidorov A.A., Gogoleva N.V., Bazhina E.S. et al. // Pure Appl. Chem. 2020. V. 92. P. 1093.
  11. Bazhina E.S., Nikiforova M.E., Aleksandrov G.G. et al. // Russ. Chem. Bull. 2011. V. 60. P. 797. https://doi.org/10.1007/s11172-011-0127-6;
  12. Bushuev V.A., Gogoleva N.V., Nikolaevskii S.A. et al. // Molecules. 2024. V. 29. P. 2125.
  13. Bondarenko M.A., Abramov P.A., Novikov A.S. et al. // Polyhedron. 2022. V. 214. P. 115644.
  14. Bondarenko M.A., Novikov A.S., Adonin S.A. // Russ. J. Inorg. Chem. 2021. V. 66. P. 814. https://doi.org/10.1134/S0036023621060061
  15. Zaguzin A.S., Sukhikh T.S., Kolesov B.A. et al. // Polyhedron. 2022. V. 212. P. 115587.
  16. Bondarenko M.A., Novikov A.S., Korolkov I.V. et al. // Inorg. Chim. Acta. 2021. V. 524. P. 120436.
  17. Bondarenko M.A., Novikov A.S., Sukhikh T.S. et al. // J. Mol. Struct. 2021. V. 1244. P. 130942.
  18. Polyukhov D.M., Kudriavykh N.A., Gromilov S.A. et al. // ACS Energy Lett. 2022. V. 7. P. 4336.
  19. Yu X., Ryadun A.A., Potapov A.S., Fedin V.P. // J. Hazard. Mater. 2023. V. 452. P. 131289.
  20. Yu X., Ryadun A.A., Pavlov D.I. et al. // Angew. Chem. Int. Ed. 2023. V. 62. P. 202306680.
  21. Yu X., Ryadun A.A., Pavlov D.I. et al. // Adv. Mater. 2024. V. 36. P. 2311939.
  22. Nehrkorn J., Valuev I.A., Kiskin M.A. et al. // J. Mater. Chem. C. 2021. V. 9. P. 9446.
  23. Jiang G., Osman S., Senthil R.A. et al. // J. Energy Storage. 2022. V. 49. P. 104071.
  24. Dong K., Liang J., Wang Y. et al. // ACS Catal. 2022. V. 12. № 10. P. 6092.
  25. Zhang Y., Li J., Zhao W. et al. // Adv. Mater. 2022. V. 34. № 6. P. 2108114.
  26. Kong Y.-X., Di Y.-Y., Yang W.-W. et al. // J. Chem. Eng. Data. 2009. V. 54. № 8. P. 2256.
  27. Mukherjee S., Chen S., Bezrukov A.A. et al. // Angew. Chem. Int. Ed. 2020. V. 59. P. 16188.
  28. Wang W., Lemaire R., Bensakhria A., Luart D. // J. Anal. Appl. Pyrolysis. 2022. V. 163. P. 105479.
  29. Zeng L., Huang L., Wang Z. et al. // Angew. Chem. Int. Ed. 2021. V. 60. № 44. P. 23569. https://doi.org/10.1002/anie.202108076;
  30. Yang J., Trickett C.A., Alahmad S.B. et al. // J. Am. Chem. Soc. 2017. V. 139. № 24. P. 8118.
  31. Liu W., Low N.W.L., Feng B. et al. // Environ. Sci. Technol. 2010. V. 44. № 2. P. 841.
  32. Karppinen M., Fjellvåg H., Konno T. et al. // Chem. Mater. 2004. V. 16. № 14. P. 2790.
  33. Tahashi M., Takahashi M., Goto H. // J. Am. Ceram. Soc. 2017. V. 101. № 4. P. 1393.
  34. Tahashi M., Tanimoto T., Goto H. et al. // J. Am. Ceram. Soc. 2010. V. 93. № 10. P. 2915.
  35. Cambridge Structural Atabase. CSD version 5.45 (November 2023).
  36. Banerjee D., Wang H., Gong Q. et al. // Chem. Sci. 2016. V. 7. P. 759.
  37. Plonka A.M., Chen X., Wang H. et al. // Chem. Mater. 2016. V. 28. № 6. P. 1636.
  38. Lin Y., Zhang J., Pandey H. et al. // J. Mater. Chem. A. 2021. V. 9. P. 26202.
  39. Plonka A.M., Banerjee D., Woerner W.R. et al. // Angew. Chem. Int. Ed. 2013. V. 52. № 6. P. 1692.
  40. Chen X., Plonka A.M., Banerjee D. et al. // J. Am. Chem. Soc. 2015. V. 137. № 22. P. 7007.
  41. Furman J.D., Burwood R.P., Tang M. et al. // J. Mater. Chem. 2011. V. 21. P. 6595.
  42. Yin Y.-J., Zhao H., Zhang L. et al. // Chem. Mater. 2021. V. 33. № 18. P. 7272.
  43. Wei Z.-W., Chen C.-X., Zheng S.-P. et al. // Inorg. Chem. 2016. V. 55. № 15. P. 7311.
  44. Wu Z.-F., Tan B., Fu Z.-H. et al. // Chem. Sci. 2022. V. 13. P. 1375.
  45. Wang Y.-X., Wang H.-M, Meng P. et al. // Dalton Trans. 2021. V. 50. P. 1740.
  46. Bazaga-García M., Colodrero R.M.P., Papadaki M. et al. // J. Am. Chem. Soc. 2014. V. 136. № 15. P. 5731.
  47. Krause L., Herbst-Irmer R., Sheldrick G.M., Stalke D. // J. Appl. Cryst. 2015. V. 48. P. 3.
  48. Sheldrick G.M. // Acta Crystallogr. A. 2015. V. 71. № 1. Р. 3.
  49. Sheldrick G.M. // Acta Crystallogr. C. 2015. V. 71. № 1. Р. 3.
  50. Dolomanov O.V., Bourhis L.J., Gildea R.J. et al. // J. Appl. Crystallogr. 2009. V. 42. № 2. P. 339.
  51. Llunell M., Casanova D., Cirena J. et al. SHAPE. Version.2.1. Program for the Stereochemical Analysis of Molecular Fragments by Means of Continuous Shape Measures and Associated Tools. Barcelona (Spain): Universitat de Barcelona, 2013.
  52. Blatov V.A., Shevchenko A.P., Proserpio D.M. // Cryst. Growth Des. 2014. V. 14. № 7. P. 3576
  53. Alexandrov E.V., Shevchenko A.P., Blatov V.A. // Cryst. Growth Des. 2019. V. 19. № 5. P. 2604.
  54. Troyanov S.I., Il′ina E.G., Dunaeva K.M. // Koord. Khim. 1991. V. 17. № 12. P. 1692.
  55. Denisova T.O., Amel'chenkova E.V., Pruss I.V. et al. // Russ. J. Inorg. Chem. 2006. V. 51. № 7. P. 1020. https://doi.org/10.1134/S0036023606070084
  56. Fomina I.G., Chernyshev V.V., Velikodnyi Y.A. et al. // Russ. Chem. Bull. 2013. V. 62. P. 427. https://doi.org/10.1007/s11172-013-0057-6
  57. Golubnichaya M.A., Sidorov A.A., Fomina I.G. et al. // Russ. Chem. Bull. 1999. V. 48. P. 1751. https://doi.org/10.1007/BF02494824
  58. Fomina I.G., Aleksandrov G.G., Dobrokhotova Z.V. et al. // Russ. Chem. Bull. 2006. V. 55. P. 1909. https://doi.org/10.1007/s11172-006-0532-4
  59. Zorina-Tikhonova E.N., Yambulatov D.S., Kiskin M.A. et al. // Russ. J. Coord. Chem. 2020. V. 46. P. 75. https://doi.org/10.1134/S1070328420020104
  60. Shevchenko A.P., Shabalin A.A., Karpukhin I.Yu., Blatov V.A. // Sci. Technol. Adv. Mater. Methods. 2022. V. 2. № 1. P. 250.
  61. Kim H., Samsonenko D.G., Yoon M. et al. // Chem. Commun. 2008. V. 39. P. 4697.
  62. Wang Z., Zhang B., Fujiwara H. et al. // Chem. Commun. 2004. V. 4. P. 416.
  63. Wang Z., Zhang Y., Kurmoo M. et al. // Aust. J. Chem. 2006. V. 59. № 9. P. 617.
  64. Yang H.-J., Kou H.-Z., Ni Z.-H. et al. // Inorg. Chem. Commun. 2005. V. 8. № 9. P. 846.

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Structure of the polymer chain of compound I (thermal ellipsoids are shown with a 50% probability; hydrogen atoms and tert-butyl groups of substituents are not shown) (a). Crystal packing of compound I (b).

下载 (1MB)
3. Fig. 2. Structure of the polymer chain of compound II (thermal ellipsoids are shown with a 50% probability; hydrogen atoms are not shown) (a). Crystal packing of compound II (b). Minor components of disordered tert-butyl groups and coordinated DMFA molecule and water molecules with partial position occupancy are not shown.

下载 (1MB)
4. Fig. 3. Structure of the polymer chain of compound III (thermal ellipsoids are shown with a 50% probability; hydrogen atoms are not shown) (a). Crystal packing of compound III (b).

下载 (761KB)
5. Fig. 4. Structure of the fragment of polymer IV (thermal ellipsoids are shown with 50% probability; hydrogen atoms are not shown) (a). Crystal packing of compound IV (b).

下载 (1MB)
6. Supplementary
下载 (283KB)

版权所有 © Российская академия наук, 2024