Synthesis and X-ray Structures of Polymeric Calcium Carboxylates
- 作者: Samulionis A.S.1, Voronina J.K.1, Melnikov S.N.1, Gavronova A.S.1, Utepova D.A.1, Gogoleva N.V.1, Goloveshkin A.S.2, Yambulatov D.S.1, Nikolaevskii S.A.1, Kiskin M.A.1, Eremenko I.L.1
-
隶属关系:
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences
- Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences
- 期: 卷 50, 编号 9 (2024)
- 页面: 613-626
- 栏目: Articles
- URL: https://gynecology.orscience.ru/0132-344X/article/view/667667
- DOI: https://doi.org/10.31857/S0132344X24090084
- EDN: https://elibrary.ru/LXIOMZ
- ID: 667667
如何引用文章
详细
The reactions of calcium hydroxide with pivalic, 1-naphthoic, and 2-furancarboxylic acids afford the corresponding polymeric calcium carboxylates. Depending on the crystallization conditions, calcium pivalate is isolated as two different coordination polymers: [Ca3(Piv)6(DMF)2]n · 0.635nC6H6 · 0.365nDMF (I) and [Ca(Рiv)(H2O)2.333(DMF)0.666]n · nРiv·0.333H2O (II). The synthesized calcium 1-naphthoate contains coordinated water molecules [Сa(Naph)2(H2O)2]n (III), and calcium furoate [Ca(Fur)2]n (IV) contains no ancillary ligands. The structures of compounds I–IV are determined by X-ray diffraction (XRD) (CIF files CCDC nos. 2342790–2342793, respectively). The structures of compounds I–III are characterized by the 1D polymeric structure, and compound IV is the 3D polymer.
全文:

作者简介
A. Samulionis
Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences
Email: sanikol@igic.ras.ru
俄罗斯联邦, Moscow
J. Voronina
Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences
Email: sanikol@igic.ras.ru
俄罗斯联邦, Moscow
S. Melnikov
Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences
Email: sanikol@igic.ras.ru
俄罗斯联邦, Moscow
A. Gavronova
Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences
Email: sanikol@igic.ras.ru
俄罗斯联邦, Moscow
D. Utepova
Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences
Email: sanikol@igic.ras.ru
俄罗斯联邦, Moscow
N. Gogoleva
Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences
Email: sanikol@igic.ras.ru
俄罗斯联邦, Moscow
A. Goloveshkin
Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences
Email: sanikol@igic.ras.ru
俄罗斯联邦, Moscow
D. Yambulatov
Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences
Email: sanikol@igic.ras.ru
俄罗斯联邦, Moscow
S. Nikolaevskii
Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences
编辑信件的主要联系方式.
Email: sanikol@igic.ras.ru
俄罗斯联邦, Moscow
M. Kiskin
Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences
Email: sanikol@igic.ras.ru
俄罗斯联邦, Moscow
I. Eremenko
Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences
Email: sanikol@igic.ras.ru
俄罗斯联邦, Moscow
参考
- Bennett T., Geue N., Timco G. et al. // Chem. Eur. J. 2024. V. 30. P. e202400432.
- Darii M., Leusen J.V., Kravtsov V.Ch. et al. // Cryst. Growth Des. 2023. V. 23. P. 6944.
- Pavlov D.I., Yu X., Ryadun A.A. et al. // Food Chem. 2024. V. 445. P. 138747. https://doi.org/10.1016/j.foodchem.2024.138747;
- Lysova A.A., Samsonenko D.G., Dorovatovskii P.V. et al. // J. Am. Chem. Soc. 2019. V. 141. P. 17260.
- Bondarenko G.N., Ganina O.G., Lysova A.A. et al. // J. CO2 Util. 2021. V. 53. P. 101718.
- Lysova A.A., Samsonenko D.G., Kovalenko K.A. et al. // Angew. Chem. Int. Ed. 2020. V. 59. P. 20561.
- Podgornii D., Leusen J.V., Kravtsov V.Ch. et al. // CrystEngComm. 2021. V. 23. P. 153.
- Alotaibi R., Fowler J.M., Lockyer S.J. et al. // Angew. Chem. Int. Ed. 2021. V. 133. P. 9575.
- Bazhina E.S., Gogoleva N.V., Zorina-Tikhonova E.N. et al. // J. Struct. Chem. 2019. V. 60. P. 855. https://doi.org/10.1134/S0022476619060015
- Sidorov A.A., Gogoleva N.V., Bazhina E.S. et al. // Pure Appl. Chem. 2020. V. 92. P. 1093.
- Bazhina E.S., Nikiforova M.E., Aleksandrov G.G. et al. // Russ. Chem. Bull. 2011. V. 60. P. 797. https://doi.org/10.1007/s11172-011-0127-6;
- Bushuev V.A., Gogoleva N.V., Nikolaevskii S.A. et al. // Molecules. 2024. V. 29. P. 2125.
- Bondarenko M.A., Abramov P.A., Novikov A.S. et al. // Polyhedron. 2022. V. 214. P. 115644.
- Bondarenko M.A., Novikov A.S., Adonin S.A. // Russ. J. Inorg. Chem. 2021. V. 66. P. 814. https://doi.org/10.1134/S0036023621060061
- Zaguzin A.S., Sukhikh T.S., Kolesov B.A. et al. // Polyhedron. 2022. V. 212. P. 115587.
- Bondarenko M.A., Novikov A.S., Korolkov I.V. et al. // Inorg. Chim. Acta. 2021. V. 524. P. 120436.
- Bondarenko M.A., Novikov A.S., Sukhikh T.S. et al. // J. Mol. Struct. 2021. V. 1244. P. 130942.
- Polyukhov D.M., Kudriavykh N.A., Gromilov S.A. et al. // ACS Energy Lett. 2022. V. 7. P. 4336.
- Yu X., Ryadun A.A., Potapov A.S., Fedin V.P. // J. Hazard. Mater. 2023. V. 452. P. 131289.
- Yu X., Ryadun A.A., Pavlov D.I. et al. // Angew. Chem. Int. Ed. 2023. V. 62. P. 202306680.
- Yu X., Ryadun A.A., Pavlov D.I. et al. // Adv. Mater. 2024. V. 36. P. 2311939.
- Nehrkorn J., Valuev I.A., Kiskin M.A. et al. // J. Mater. Chem. C. 2021. V. 9. P. 9446.
- Jiang G., Osman S., Senthil R.A. et al. // J. Energy Storage. 2022. V. 49. P. 104071.
- Dong K., Liang J., Wang Y. et al. // ACS Catal. 2022. V. 12. № 10. P. 6092.
- Zhang Y., Li J., Zhao W. et al. // Adv. Mater. 2022. V. 34. № 6. P. 2108114.
- Kong Y.-X., Di Y.-Y., Yang W.-W. et al. // J. Chem. Eng. Data. 2009. V. 54. № 8. P. 2256.
- Mukherjee S., Chen S., Bezrukov A.A. et al. // Angew. Chem. Int. Ed. 2020. V. 59. P. 16188.
- Wang W., Lemaire R., Bensakhria A., Luart D. // J. Anal. Appl. Pyrolysis. 2022. V. 163. P. 105479.
- Zeng L., Huang L., Wang Z. et al. // Angew. Chem. Int. Ed. 2021. V. 60. № 44. P. 23569. https://doi.org/10.1002/anie.202108076;
- Yang J., Trickett C.A., Alahmad S.B. et al. // J. Am. Chem. Soc. 2017. V. 139. № 24. P. 8118.
- Liu W., Low N.W.L., Feng B. et al. // Environ. Sci. Technol. 2010. V. 44. № 2. P. 841.
- Karppinen M., Fjellvåg H., Konno T. et al. // Chem. Mater. 2004. V. 16. № 14. P. 2790.
- Tahashi M., Takahashi M., Goto H. // J. Am. Ceram. Soc. 2017. V. 101. № 4. P. 1393.
- Tahashi M., Tanimoto T., Goto H. et al. // J. Am. Ceram. Soc. 2010. V. 93. № 10. P. 2915.
- Cambridge Structural Atabase. CSD version 5.45 (November 2023).
- Banerjee D., Wang H., Gong Q. et al. // Chem. Sci. 2016. V. 7. P. 759.
- Plonka A.M., Chen X., Wang H. et al. // Chem. Mater. 2016. V. 28. № 6. P. 1636.
- Lin Y., Zhang J., Pandey H. et al. // J. Mater. Chem. A. 2021. V. 9. P. 26202.
- Plonka A.M., Banerjee D., Woerner W.R. et al. // Angew. Chem. Int. Ed. 2013. V. 52. № 6. P. 1692.
- Chen X., Plonka A.M., Banerjee D. et al. // J. Am. Chem. Soc. 2015. V. 137. № 22. P. 7007.
- Furman J.D., Burwood R.P., Tang M. et al. // J. Mater. Chem. 2011. V. 21. P. 6595.
- Yin Y.-J., Zhao H., Zhang L. et al. // Chem. Mater. 2021. V. 33. № 18. P. 7272.
- Wei Z.-W., Chen C.-X., Zheng S.-P. et al. // Inorg. Chem. 2016. V. 55. № 15. P. 7311.
- Wu Z.-F., Tan B., Fu Z.-H. et al. // Chem. Sci. 2022. V. 13. P. 1375.
- Wang Y.-X., Wang H.-M, Meng P. et al. // Dalton Trans. 2021. V. 50. P. 1740.
- Bazaga-García M., Colodrero R.M.P., Papadaki M. et al. // J. Am. Chem. Soc. 2014. V. 136. № 15. P. 5731.
- Krause L., Herbst-Irmer R., Sheldrick G.M., Stalke D. // J. Appl. Cryst. 2015. V. 48. P. 3.
- Sheldrick G.M. // Acta Crystallogr. A. 2015. V. 71. № 1. Р. 3.
- Sheldrick G.M. // Acta Crystallogr. C. 2015. V. 71. № 1. Р. 3.
- Dolomanov O.V., Bourhis L.J., Gildea R.J. et al. // J. Appl. Crystallogr. 2009. V. 42. № 2. P. 339.
- Llunell M., Casanova D., Cirena J. et al. SHAPE. Version.2.1. Program for the Stereochemical Analysis of Molecular Fragments by Means of Continuous Shape Measures and Associated Tools. Barcelona (Spain): Universitat de Barcelona, 2013.
- Blatov V.A., Shevchenko A.P., Proserpio D.M. // Cryst. Growth Des. 2014. V. 14. № 7. P. 3576
- Alexandrov E.V., Shevchenko A.P., Blatov V.A. // Cryst. Growth Des. 2019. V. 19. № 5. P. 2604.
- Troyanov S.I., Il′ina E.G., Dunaeva K.M. // Koord. Khim. 1991. V. 17. № 12. P. 1692.
- Denisova T.O., Amel'chenkova E.V., Pruss I.V. et al. // Russ. J. Inorg. Chem. 2006. V. 51. № 7. P. 1020. https://doi.org/10.1134/S0036023606070084
- Fomina I.G., Chernyshev V.V., Velikodnyi Y.A. et al. // Russ. Chem. Bull. 2013. V. 62. P. 427. https://doi.org/10.1007/s11172-013-0057-6
- Golubnichaya M.A., Sidorov A.A., Fomina I.G. et al. // Russ. Chem. Bull. 1999. V. 48. P. 1751. https://doi.org/10.1007/BF02494824
- Fomina I.G., Aleksandrov G.G., Dobrokhotova Z.V. et al. // Russ. Chem. Bull. 2006. V. 55. P. 1909. https://doi.org/10.1007/s11172-006-0532-4
- Zorina-Tikhonova E.N., Yambulatov D.S., Kiskin M.A. et al. // Russ. J. Coord. Chem. 2020. V. 46. P. 75. https://doi.org/10.1134/S1070328420020104
- Shevchenko A.P., Shabalin A.A., Karpukhin I.Yu., Blatov V.A. // Sci. Technol. Adv. Mater. Methods. 2022. V. 2. № 1. P. 250.
- Kim H., Samsonenko D.G., Yoon M. et al. // Chem. Commun. 2008. V. 39. P. 4697.
- Wang Z., Zhang B., Fujiwara H. et al. // Chem. Commun. 2004. V. 4. P. 416.
- Wang Z., Zhang Y., Kurmoo M. et al. // Aust. J. Chem. 2006. V. 59. № 9. P. 617.
- Yang H.-J., Kou H.-Z., Ni Z.-H. et al. // Inorg. Chem. Commun. 2005. V. 8. № 9. P. 846.
补充文件
