Quantum-chemical calculations of direct spin–spin coupling constants 195Pt–13C in the platinum complexes: possibilities and restraints

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Calculational protocols are proposed for the estimation of direct spin–spin coupling constants 1JPtC in the platinum complexes with practically significant accuracy. To attain a good accuracy, calculations are required within the framework of a fully relativistic four-component level of the theory (RMSE = 24.7 Hz (2%)). A scalar relativistic approximation can be used as an alternative, but the accuracy will appreciably be lower (RMSE = 50.5 Hz (5%)).

全文:

受限制的访问

作者简介

S. Kondrashova

Kazan Scientific Center, Russian Academy of Sciences

Email: lsk@iopc.ru

Arbuzov Institute of Organic and Physical Chemistry

俄罗斯联邦, Kazan

Sh. Latypov

Kazan Scientific Center, Russian Academy of Sciences

编辑信件的主要联系方式.
Email: lsk@iopc.ru

Arbuzov Institute of Organic and Physical Chemistry

俄罗斯联邦, Kazan

参考

  1. Wang X., Guo Z. // Chem. Soc. Rev. 2013. V. 42. P. 202.
  2. De Castro F., De Luca E., Benedetti M. et al. // Coord. Chem. Rev. 2022. V. 451. P. 214276.
  3. Seah J.W.K., Lee J.X.T., Li Y. et al. // Inorg. Chem. 2021. V. 60. P. 17276.
  4. Bagno A., Rastrelli F., Saielli G. // J. Org. Chem. 2007. V. 72. P. 7373.
  5. Balandina A., Kalinin A., Mamedov V. et al. // Magn. Reson. Chem. 2005. V. 43. P. 816.
  6. Lodewyk M.W., Siebert M.R., Tantillo D.J. // Chem. Rev. 2011. V. 112. P. 1839.
  7. Chimichi S., Boccalini M., Matteucci A. et al. // Magn. Reson. Chem. 2010. V. 48. P. 607.
  8. Semenov V.A., Krivdin L.B. // Magn. Reson. Chem. 2019. V. 58. P. 56.
  9. Hoffmann F., Li D.-W., Sebastiani D. et al. // J. Phys. Chem. A. 2017. V. 121. P. 3071.
  10. Latypov S.K., Polyancev F.M., Yakhvarov D.G. et al. // Phys. Chem. Chem. Phys. 2015. V. 17. P. 6976.
  11. Kondrashova S.A., Polyancev F.M., Ganushevich Y.S. et al. // Organometallics. 2021. V. 40. P. 1614.
  12. Latypov S.K., Kondrashova S.A., Polyancev F.M. et al. // Organometallics. 2020. V. 39. P. 1413.
  13. Payard P.-A., Perego L.A., Grimaud L. et al. // Organometallics. 2020. V. 39. P. 3121.
  14. Kondrashova S.A., Latypov S.K. // Organometallics. 2023. V. 42. P. 1951.
  15. Kondrashova S.A., Polyancev F.M., Latypov S.K. // Molecules. 2022. V. 27. P. 2668.
  16. Krivdin L.B. // Russ. Chem. Rev. 2021. V. 90. P. 1166.
  17. Helgaker T., Jaszuński M., Pecul M. // Prog. Nucl. Magn. Reson. Spectrosc. 2008. V. 53. P. 249.
  18. Rusakova I.L. // Magnetochemistry. 2022. V. 8. P. 50.
  19. Русаков Ю.Ю., Кривдин Л.Б. // Успехи химии. 2013. Т. 82. С. 99.
  20. Krivdin L.B., Contreras R.H. // Annu. Rep. NMR Spectrosc. 2007. P. 133.
  21. Русаков И.Л., Русаков Ю.Ю., Кривдин Л.Б. // Успехи химии. 2016. Т. 85. С. 356.
  22. Calculation of NMR and EPR Parameters / Eds Kaupp M., Buhl M., Malkin V.G. Weinheim: Wiley, 2004.
  23. Klepach T., Zhang W., Carmichael I. et al. // J. Org. Chem. 2008. V. 73. P. 4376.
  24. Del Bene J.E., Alkorta I., Elguero J. // J. Phys. Chem. A. 2010. P. 2637.
  25. Helgaker T., Jaszuński M., Świder P. // J. Org. Chem. 2016. P. 11496.
  26. Deng W., Cheeseman J.R., Frisch M.J.J. // Chem. Theory Comput. 2006. V. 2. P. 1028.
  27. Kutateladze A.G., Mukhina O.A. // J. Org. Chem. 2015. V. 80. P. 5218.
  28. Kutateladze A.G., Reddy D.S. // J. Org. Chem. 2017. V. 82. P. 3368.
  29. Bally T., Rablen P.R. // J. Org. Chem. 2011. V. 76. P. 4818.
  30. San Fabián J., García de la Vega J.M., Suardíaz R. et al. // Magn. Reson. Chem. 2013. V. 51. P. 775.
  31. Carvalho J., Paschoal D., Guerra C.F. et al. // Chem. Phys. Lett. 2020. V. 745. P. 137279.
  32. Silva J.H.C., Dos Santos H.F., Paschoal D.F.S. // Magnetochemistry. 2021. V. 7. P. 148.
  33. Vícha J., Straka M., Munzarová M.L. et al. // J. Chem. Theory Comput. 2014. V. 10. P. 1489.
  34. Jia Y.-X., Yang X.-Y., Tay W.S. et al. // Dalton Trans. 2016. V. 45. P. 2095.
  35. Jia Y.-X., Li B.-B., Li Y. et al. // Organometallics. 2014. V. 33. P. 6053.
  36. Khandogin J., Ziegler T.A. // J. Phys. Chem. A. 1999. V. 104. P. 113.
  37. Autschbach J., Le Guennic B. // J. Am. Chem. Soc. 2003. V. 125. P. 13585.
  38. Autschbach J., Ziegler T. // J. Am. Chem. Soc. 2001. V. 123. P. 3341.
  39. Moncho S., Autschbach J.J. // Chem. Theory Comput. 2009. V. 6. P. 223.
  40. Paschoal D., Guerra C.F., de Oliveira M.A.L. et al. // J. Comput. Chem. 2016. V. 37. P. 2360.
  41. Kohn W., Sham L.J. // Phys. Rev. 1965. V. 140. P. A1133.
  42. Frisch M.J., Trucks G.W., Schlegel H.B. et al. Gaussian 16. Revision A.03. Wallingford (CT, USA): Gaussian, Inc., 2016.
  43. Adamo C., Barone V. // J. Chem. Phys. 1999. V. 110. P. 6158.
  44. Hehre W.J., Ditchfield R., Pople J.A. // J. Chem. Phys. 1972. V. 56. P. 2257.
  45. Clark T., Chandrasekhar J., Spitznagel G.W. et al. // J. Comput. Chem. 1983. V. 4. P. 294.
  46. Pritchard B.P., Altarawy D., Didier B. et al. // J. Chem. Inf. Model. 2019. V. 59. P. 4814.
  47. Feller D. // J. Comput. Chem. 1996. V. 17. P. 1571.
  48. Schuchardt K.L., Didier B.T., Elsethagen T. et al. // J. Chem. Inf. Model. 2007. V. 47. P. 1045.
  49. Hansen A.E., Bouman T.D. // J. Chem. Phys. 1985. V. 82. P. 5035.
  50. Malkin V.G., Malkina O.L., Reviakine R. et al. MAG-ReSpect. Version 5.1.0. 2019.
  51. Dyall K.G. // Theor. Chem. Acc. 2004. V. 112. P. 403.
  52. Hoogervorst W.J., Elsevier C.J., Lutz M. et al // Organometallics. 2001. V. 20. P. 4437.
  53. Zhang X., Wright A.M., DeYonker N.J. et al // Organometallics. 2012. V. 31. P. 1664.
  54. Jia Y.-X., Yang X.-Y., Tay W. S. et al // Dalton Trans. 2016. V. 45. P. 2095.
  55. Brendel M., Engelke R., Desai V.G. et al // Organometallics. 2015. V. 34. P. 2870.
  56. Green M., Howard J.A.K., Mitrprachachon P. et al // Dalton Trans. 1979. P. 306.
  57. Ogoshi S., Morita M., Kurosawa H. // J. Am. Chem. Soc. 2003. V. 125. P. 9020.
  58. de Berrêdo R.C., Jorge F.E. // J. Mol. Struc-THEOCHEM. 2010. V. 961, P. 107.
  59. Noro T., Sekiya M., Koga T. // Theor. Chem. Acc. 2013. P. 132.
  60. Repisky M., Komorovsky S., Kadek M. et al. // J. Chem. Phys. 2020. P. 152.
  61. Кривдин Л.Б., Семенов В.А., Самульцев Д.О. // Сб. науч. тр. Ангарского гос. техн. ун-та. 2020. Т. 1. С. 87.

补充文件

附件文件
动作
1. JATS XML
2. Scheme 1. Model complexes of platinum (I–IX).

下载 (126KB)
3. Fig. 1. Correlation of calculated at the PBE0/{6-311G(2d), Pt(NMR-DKH)} level and experimental 1JPtC for the test set of Pt complexes.

下载 (120KB)
4. Fig. 2. Correlation of calculated at the PBE0/{6-311G(2d), Pt(Jorge-DZP)} level and experimental 1JPtC for the test set of Pt complexes.

下载 (116KB)
5. Fig. 3. Correlation of calculated at the PBE0/{6-311G(2d), Pt(Sapporo-DKH3-DZP)} level and experimental 1JPtC for the test set of Pt complexes.

下载 (118KB)
6. Fig. 4. Correlation of calculated at the mDKS/TZ_DZ level and experimental 1JPtC for the test set of Pt-complexes.

下载 (105KB)

版权所有 © Российская академия наук, 2025