Влияние армирующих наполнителей на механические характеристики термоэластопластов, разработанных для 3D-печати
- Authors: Тимошенко М.В.1, Лисянская М.В.2, Сычев М.М.1, Бритов В.П.3
-
Affiliations:
- Институт химии силикатов им. И.В. Гребенщикова НИЦ “Курчатовский институт”
- Воронежский государственный институт
- Санкт-Петербургский государственный технологический институт (технический университет)
- Issue: Vol 50, No 6 (2024)
- Pages: 555-570
- Section: Articles
- URL: https://gynecology.orscience.ru/0132-6651/article/view/677857
- DOI: https://doi.org/10.31857/S0132665124060074
- EDN: https://elibrary.ru/DVTWPZ
- ID: 677857
Cite item
Abstract
Исследовано влияние армирующих наполнителей различной структуры на физико-механические характеристики термоэластопласта на основе бутадиен-стирольного эластомера с целью дальнейшего применения в аддитивных технологиях при изготовлении эластичных материалов сложной геометрии. Подобраны оптимальные концентрации для графена и углеродных нанотрубок, позволяющие достичь максимального эффекта армирования. Отмечено, что при введении комбинированного наполнителя в полимерную матрицу можно получить синергетический эффект и достичь более высоких физико-механических характеристик за счет различной структуры наполнителя. Показано, что применение 3D-печати наноармированным материалом позволяет достичь более высоких физико-механических характеристик по сравнению со стандартными методами формования.
Full Text

About the authors
М. В. Тимошенко
Институт химии силикатов им. И.В. Гребенщикова НИЦ “Курчатовский институт”
Author for correspondence.
Email: timoshe-miknail@mail.ru
Russian Federation, 199034, Санкт-Петербург, наб. Макарова, 2
М. В. Лисянская
Воронежский государственный институт
Email: timoshe-miknail@mail.ru
Russian Federation, 394018, Воронеж, Университетская пл., 1
М. М. Сычев
Институт химии силикатов им. И.В. Гребенщикова НИЦ “Курчатовский институт”
Email: timoshe-miknail@mail.ru
Russian Federation, 199034, Санкт-Петербург, наб. Макарова, 2
В. П. Бритов
Санкт-Петербургский государственный технологический институт (технический университет)
Email: timoshe-miknail@mail.ru
Russian Federation, 190013, Санкт-Петербург, Московский пр., 26
References
- Дик Дж.С. Технология резины: Рецептуростроение и испытания / Пер. с англ.; под ред. Шершнева В.А. СПб.: Научные основы и технологии, 2010. 620 с.
- Каучук и резина. Наука и технология: монография // Под. ред. Дж. Марка, Б. Эрмана, Ф. Эйрича; пер. с англ. Долгопрудный: Интеллект, 2011. 768 с.
- Холден Д., Крихельдорф Х.Р., Куирк Р.П. Термоэластопласты / Пер. с англ. СПб.: Профессия, 2011. 720 с.
- Drobny J.G. Handbook of thermoplastic elastomers. New York: William Andrew Inc. 2007.
- Корнев А.Е. Технология эластомерных материалов / А.Е. Корнев, А.М. Буканов, О.Н. Шевердяев. М.: НППА Истек, 2009. 504 с.
- Voznyakovskii A.P., Neverovskaya A.Yu., Otvalko Ja.A., Gorelova E.V., Zabelina A.N. Facile synthesis of 2D carbon structures as a filler for polymer composites // Nanosystems: physics, chemistry, mathematics. 2018. V. 9 (1). P. 125–128.
- Liu M., Papageorgiou D.G., Li S., Lin K., Kinloch I.A., Young R.J. Micromechanics of reinforcement of a graphene-based thermoplastic elastomer nanocomposite // Composites Part A: Applied Science and Manufacturing. 2018. V. 110. P. 84–92.
- Lee C., Wei X., Kysar J.W., Hone J. Measurement of the elastic properties and intrinsic strength of monolayer graphene // Science. 2008. V. 321. Is. 5887. P. 385–388.
- Gong L., Kinloch I.A., Young R.J., Riaz I., Jalil R., Novoselov K.S. Interfacial stress transfer in a graphene monolayer nanocomposite // Adv. Mater. 2010. V. 22 (24). P. 2694–2697.
- Papageorgiou D.G., Kinloch I.A., Young R.J. Graphene/elastomer nanocomposites // Carbon. 2015. V. 95. P. 460–484.
- Ahmad S.R., Xue C., Young R.J. The mechanisms of reinforcement of polypropylene by graphene nanoplatelets // Mater. Sci. Eng. B. 2017. V. 216. P. 2–9.
- Li S., Li Z., Burnett T.L., Slater T.J., Hashimoto T., Young R.J. Nanocomposites of graphene nanoplatelets in natural rubber: microstructure and mechanisms of reinforcement // J. Mater. Sci., 2017. V. 52 (16). P. 9558–9572.
- Li Z., Young R.J., Wilson N.R., Kinloch I.A., Vallés C., Li Z. Effect of the orientation of graphene-based nanoplatelets upon the Young’s modulus of nanocomposites // Compos. Sci. Technol. 2016. V. 123. P. 125–133.
- Papageorgiou D.G., Kinloch I.A., Young R.J. Mechanical properties of graphene and graphenebased nanocomposites // Prog. Mater. Sci. 2017. V. 90. P. 75–127.
- Young R.J., Kinloch I.A., Gong L., Novoselov K.S. The mechanics of graphene nanocomposites: a review // Compos. Sci. Technol. 2012. V. 72 (12). P. 1459– 1476.
- Young R.J., Liu M., Kinloch I.A., Li S., Zhao X., Vallés C. The mechanics of reinforcement of polymers by graphene nanoplatelets // Compos. Sci. Technol. 2018. V. 154. P. 110–116.
- Namilae S., Chandra N., Shet C. Mechanical behavior of functionalized nanotubes // Chem. Phys. Lett. 2004. V. 387. P. 247–252.
- Iijima S. Helical microtubules of graphitic carbon // Nature. 1991. V. 354. P. 56–58.
- Zhen S., Kai K., Ica M.Z. Effect of carbon nanotube morphology on properties in thermoplastic elastomer composites for strain sensors // Composites Part A: Applied Science and Manufacturing. 2019. V. 121. P. 207–212.
- Tarawneh M.A., Ahmad S., Chen R.S. Mechanical, thermal, and electrical properties of graphene oxide–multiwalled carbon nanotubes-filled thermoplastic elastomer nanocomposite // Journal of Elastomers & Plastics. 2017. V. 49 (4). P. 345–355.
- Nithin C., Sarathchandran C., Anjaly S., Allisson S.F., Sabu T. Quantifying morphological and mechanical properties of thermoplastics elastomers by selective localization of nanofillers with different geometries // Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2021. V. 629. № 127365.
- Singh P., Singari R.M., Mishra R. Improved mechanical properties of multiwalled carbon nanotube reinforced acrylonitrile butadiene styrene nanocomposites prepared by twin screw extruder // Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering. 2024. V. 238 (2). P. 954–964.
- Sahu S.K., Rama Sreekanth P.S. Mechanical, thermal and rheological properties of thermoplastic polymer nanocomposite reinforced with nanodiamond, carbon nanotube and graphite nanoplatelets // Advances in Materials and Processing Technologies. 2022. V. 8. № 4. P. 2086–2096.
- Hota N.K., Sahoo B.P. Single-walled carbon nanotube filled thermoplastic polyurethane nanocomposites: Influence of ionic liquid on dielectric properties // Materials Today: Proceedings. 2021. V. 41. P. 216–222.
- Stanciu N.V. Thermal, rheological, mechanical, and electrical properties of polypropylene/multi-walled carbon nanotube nanocomposites // Polymers. 2021. V. 13(2). № 187.
- Datta S. Carbon nanotube enhanced shape memory epoxy for improved mechanical properties and electroactive shape recovery // Polymer. 2021. V. 212. № 123158.
- Roy S., Srivastava S.K., Pionteck J., Mittal V. Mechanically and Thermally Enhanced Multiwalled Carbon Nanotube-Graphene Hybrid filled Thermoplastic Polyurethane Nanocomposites // Macromolecular Materials and Engineering. 2014. V. 300 (3). P. 346–357.
- Chen T., Pan L., Lin M., Wang B., Liu L., Li Y., Zhu K. Dielectric, mechanical and electro-stimulus response properties studies of polyurethane dielectric elastomer modified by carbon nanotube-graphene nanosheet hybrid fillers // Polymer Testing. 2015. V. 47. P. 4–11.
- Dolmatov V.Yu. Composition materials based on elastomer and polymer matrices filled with nanodiamonds of detonation synthesis // Nanotechnologies in Russia. 2009. V. 14. P. 556–575.
- Timoshenko M.V., Balabanov S.V., Sychov M.M., Nikiforov D.I. Development of Material for 3d Printing Based on Thermoplastic Elastomer // Research and Education: Traditions and Innovations / Eds. Khakhomov S., Semchenko I., Demidenko O., Kovalenko D. Singapore: Springer, 2022. P. 285–289.
- Timoshenko M.V., Balabanov S.V., Sychev M.M. Application of Thermoplastic Elastomer for 3D Printing by Fused Deposition Modeling (FDM) // Glass. Phys. Chem. 2021. V. 47. P. 502–504.
- Timoshenko M.V., Balabanov S.V., Sychev M.M. Thermoplastic Elastomer for 3D Printing by Fused Deposition Modeling // Polym. Sci. Ser. A. 2021. V. 63. P. 652–656.
- Timoshenko M.V., Balabanov S.V., Sychov M.M. The Effect of the Introduction of Detonation Nanodiamonds on the Physical and Mechanical Characteristics of Thermoplastic Elastomers // Glass. Phys. Chem. 2023. V. 49. P. 314–318.
- Timoshenko M.V., Balabanov S.V., Sychov M.M. Influence of nanofiller distribution on the physical and mechanical characteristics of thermoplastic elastomers // Glass. Phys. Chem. 2023. V. 49. P. 546–553.
Supplementary files
