Effect of Acute Hypoxia and Hydrogen Sulfide Contamination on the Succinate Dehydrogenase Activity and Adenylate Complex of Tissues in the Bivalve Mollusk Anadara kagoshimensis (Tokunaga, 1906)

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

The separate effects of acute hypoxia and hydrogen sulfide load on the marker enzyme succinate dehydrogenase (SDH) of the mitochondrial respiratory chain and the adenylate status of tissues in the bivalve mollusk Anadara kagoshimensis (Tokunaga, 1906), a species tolerant to these groups of factors, were studied under experimental conditions. The study was carried out on adult individuals with a shell height of 23–34 cm. The control group of bivalves was kept in the water with an oxygen concentration of 7.0–8.2 mgО2/L. One experimental group was exposed to acute hypoxia (0.1 mgО2/L) and another to hydrogen sulfide load (6 mgS2–/L). The exposure period in both cases was 48 h. The water temperature was maintained at 17–20°C. The acute hypoxia led to an increase in the SDH activity in all the studied tissues (gills, foot, and hepatopancreas). This reaction was not observed under the hydrogen sulfide load. The energy state of the tissues decreased in both cases. This was expressed as a decrease in the ATP and ADP content accompanied by an increase in the AMP content, which allows implementation of the adenylate kinase reaction. These changes were more pronounced in the presence of hydrogen sulfide. However, the adenylate pool and adenylate energy charge (AEC) values remained at a relatively high level, which indicates the ability of ark clam to exist in the near-bottom water layers with a low level of oxygen and the presence of hydrogen sulfide. It is assumed that ark clam’s mitochondria have an alternative oxidase that is not sensitive to the presence of sulfides in water.

Толық мәтін

Рұқсат жабық

Авторлар туралы

A. Soldatov

Kovalevsky Institute of Biology of the Southern Seas, Russian Academy of Sciences; Sevastopol State University

Хат алмасуға жауапты Автор.
Email: alekssoldatov@yandex.ru
ORCID iD: 0000-0002-9862-123X
Ресей, Sevastopol; Sevastopol

Yu. Bogdanovich

Kovalevsky Institute of Biology of the Southern Seas, Russian Academy of Sciences

Email: alekssoldatov@yandex.ru
ORCID iD: 0000-0002-8239-4968
Ресей, Sevastopol

N. Shalagina

Kovalevsky Institute of Biology of the Southern Seas, Russian Academy of Sciences

Email: alekssoldatov@yandex.ru
ORCID iD: 0000-0001-6195-6135
Ресей, Sevastopol

V. Rychkova

Kovalevsky Institute of Biology of the Southern Seas, Russian Academy of Sciences

Email: alekssoldatov@yandex.ru
ORCID iD: 0000-0003-3797-715X
Ресей, Sevastopol

Әдебиет тізімі

  1. Ещенко Н.Д., Вольский Г.Г. Определение количества янтарной кислоты и активности сукцинатдегидрогеназы // Методы биохимических исследований. Л.: ЛГУ, 1982. С. 207−212.
  2. Живоглядова Л.А., Ревков Н.К., Фроленко Л.Н., Афанасьев Д.Ф. Экспансия двустворчатого моллюска Anadara kagoshimensis (Tokunaga, 1906) в Азовском море // Российск. журн. биол. инвазий. 2021. Т. 14. № 1. С. 83–94.
  3. Киселева М.И. Сравнительная характеристика донных сообществ у берегов Кавказа // Многолетние изменения зообентоса Черного моря. Киев: Наукова думка, 1992. С. 84–99.
  4. Лукьянова О.Н. АТФ-азы как неспецифические молекулярные биомаркёры состояния гидробионтов при антропогенном загрязнении // Тезисы докл. II международ. науч. конф. “Биотехнология – охране окружающей среды”. М.: МГУ, 2004. С. 124.
  5. Орехова Н.А., Коновалов С.К. Кислород и сульфиды в донных отложениях прибрежных районов севастопольского региона Крыма // Океанология. 2018. Т. 58. № 5. С. 739–750.
  6. Ревков Н.К. Особенности колонизации Черного моря недавним вселенцем – двустворчатым моллюском Anadara kagoshimensis (Bivalvia: Arcidae) // Морск. биол. журн. 2016. Т. 1. № 2. С. 3–17.
  7. Солдатов А.А., Головина И.В., Колесникова Е.Э. и др. Влияние сероводородной нагрузки на активность ферментов энергетического обмена и эденилатную систему тканей моллюска Anadara kagoshimensis // Биол. внутренних вод. 2022. № 5. С. 558−566.
  8. Солдатов А.А., Кухарева Т.А., Андреева А.Ю., Ефремова Е.С. Эритроидные элементы гемолимфы двустворчатого моллюска Anadara kagoshimensis (Tokunaga, 1906) в условиях сочетанного действия гипоксии и сероводородной нагрузки // Биол. моря. 2018. Т. 44. № 6. С. 390−394.
  9. Шиганова Т.А. Проект “Вселенцы”, Гос. контракт с Министерством образования и науки РФ от 20 сентября 2010 г. № 14.740.11.0422. (Институт Океанологии им. П.П. Ширшова РАН).
  10. Arp A.J., Childress J.J. Blood function in the hydrothermal vent vestimentiferan tube worm // Science. 1981. V. 213. № 4505. P. 342−344.
  11. Arp A.J., Childress J.J. Sulfide binding by the blood of the hydrothermal vent tube worm Riftia pachyptila // Science. 1983. V. 219. № 4582. P. 295−297.
  12. Atkinson D.E. The energy charge of the adenylate pools as a regulatory parameter. Interaction with feedback modifiers // Biochemistry. 1968. V. 7. № 11. P. 4030–4034. https://doi.org/10.1021/bi00851a033
  13. Bacchiocchi S., Principato G. Mitochondrial contribution to metabolic changes in the digestive gland of Mytilus galloprovincialis during anaerobiosis // J. Exp. Zool. 2000. V. 286. № 2. P. 107–113.
  14. Bagarinao T. Sulfide as an environmental factor and toxicant: tolerance and adaptations in aquatic organisms // Aquat. Toxicol. 1992. V. 24. № 1−2. P. 21−62. https://doi.org/10.1016/0166-445X(92)90015-F
  15. Bagarinao T., Vetter R. Sulphide tolerance and adaptation in the California killifish, Fundulus parvipinnis, a salt marsh resident // J. Fish Biol. 1993. V. 42. № 5. P. 729−748. https://doi.org/10.1111/j.1095-8649.1993.tb00381.x
  16. Brauner C.J., Ballantyne C.L., Randall D.J., Val A.L. Air breathing in the armored catfish (Hoplosternum littorale) as an adaptation to hypoxic, acidic, and hydrogen sulphide rich waters // Can. J. Zool. 1995. V. 73. № 4. P. 739–744.
  17. Cadenas S. Mitochondrial uncoupling, ROS generation and cardioprotection // Biochim. Biophys. Acta, Bioenerg. 2018. V. 1859. № 9. P. 940−950. https://doi.org/10.1016/j.bbabio.2018.05.019
  18. Cao Y., Wang H.G., Cao Y.Y. et al. Inhibition effects of protein-conjugated amorphous zinc sulfide nanoparticles on tumor cells growth // J. Nanopar. Res. 2011. V. 13. P. 2759−2767.
  19. Cooper C.E., Brown G.C. The inhibition of mitochondrial cytochrome oxidase by the gases carbon monoxide, nitric oxide, hydrogen cyanide and hydrogen sulfide: chemical mechanism and physiological significance // J. Bioenerg. Biomemebr. 2008. V. 40. P. 533–539.
  20. Cortesi P., Cattani O., Vitali G. Physiological and biochemical responses of the bivalve Scapharca inaequivalvis to hypoxia and cadmium exposure: erythrocytes versus other tissues // Marine Coastal Eutrophication: Proc. Int. Conf. (March 21−24, 1990). Bologna, Italy, 1992. Р. 1041−1054.
  21. Dzeja P., Terzic A. Adenylate kinase and AMP signaling networks: metabolic monitoring, signal communication and body energy sensing // Int. J. Mol. Sci. 2009. V. 10. № 4. P. 1729–1772. https://doi.org/10.3390/ijms10041729
  22. Grieshaber M.K., Völkel S. Animal adaptations for tolerance and exploitation of poisonous sulfide // Annu. Rev. Physiol. 1998. V. 60. P. 33−53. https://doi.org/10.1146/annurev.physiol.60.1.33
  23. Grivennikova V.G., Vinogradov A.D. Mitochondrial production of reactive oxygen species // Biochemistry (Moscow). 2013. V. 78. № 13. P. 1490−1511. https://doi.org/10.1134/S0006297913130087
  24. Holden J.A., Pipe R.K., Quaglia A., Ciani G. Blood cells of the arcid clam, Scapharca inaequivalvis // J. Mar. Biol. Assoc. U. K. 1994. V. 74. № 2. P. 287−299.
  25. Holm-Hansen O., Booth C.R. The measurement of adenosine triphosphate in the Ocean and its ecological significance // Limnol. Oceanogr. 1966. V. 11. № 4. P. 510–519. https://doi.org/10.4319/lo.1966.11.4.0510
  26. Itzhaki R.F., Gill D.M. A micro-biuret method for estimating proteins. // Anal. Biochem. 1964. V. 9. № 4. Р. 401–410. https://doi.org/10.1016/0003-2697(64)90200-3
  27. Kladchenko E.S., Andreyeva A.Yu., Kukhareva T.A., Soldatov A.A. Morphologic, cytometric and functional characterisation of Anadara kagoshimensis hemocytes // Fish Shellfish Immunol. 2020. V. 98. P. 1030−1032. https://doi.org/10.1016/j.fsi.2019.11.061
  28. Lowenstein J.M. Ammonia production in muscle and other tissues: the purine nucleotide cycle // Physiol. Rev. 1972. V. 52. № 2. P. 382–414. https://doi.org/10.1152/physrev.1972.52.2.382
  29. Miyamoto Y., Iwanaga C. Effects of sulphide on anoxia-driven mortality and anaerobic metabolism in the ark shell Anadara kagoshimensis // J. Mar. Biol. Assoc. U. K. 2017. V. 97. № 2. P. 329−336.
  30. Moosavi B., Berry E.A., Zhu X.L. et al. The assembly of succinate dehydrogenase: a key enzyme in bioenergetics // Cell Mol. Life Sci. 2019. V. 76. P. 4023–4042. https://doi.org/10.1007/s00018-019-03200-7
  31. Nakano T., Yamada K., Okamura K. Duration rather than frequency of hypoxia causes mass mortality in ark shells (Anadara kagoshimensis) // Mar. Pollut. Bull. 2017. V. 125. № 1−2. P. 86−91.
  32. Soldatov A.A., Andreenko T.I., Sysoeva I.V., Sysoev A.A. Tissue specificity of metabolism in the bivalve mollusc Anadara inaequivalvis Br. under conditions of experimental anoxia // J. Evol. Biochem. Physiol. 2009. V. 45. № 3. P. 349−355. https://doi.org/10.1134/s002209300903003x
  33. Stewart F.J., Cavanaugh C.M. Bacterial endosymbioses in Solemya (Mollusca: Bivalvia) – model systems for studies of symbiont-host adaptation // Antonie van Leeuwenhoek. 2006. V. 90. P. 343−360.
  34. Tobler M., DeWitt T.J., Schlupp I. Toxic hydrogen sulfide and dark caves: phenotypic and genetic divergence across two abiotic environmental gradients in Poecelia mexicana // Evolution. 2008. V. 62. № 10. P. 2643–2649.
  35. Tobler M., Palacios M., Chapman L.J. Evolution in extreme environments: replicated phenotypic differentiation in livebearing fish inhabiting sulfidic springs // Evolution. 2011. V. 65. № 8. P. 2213–2228.
  36. van Hellemond J.J., van der Klei A., van Weelden S.W., Tielens A.G. Biochemical and evolutionary aspects of anaerobically fuctioning mitochondria // Philos. Trans. R. Soc. Lond. Soc. B. 2003. V. 358. № 1429. P. 205−215. https://doi.org/10.1098/rstb.2002.1182
  37. Vismann B. Hematin and sulfide removal in hemolymph of the hemoglobin-containing bivalve Scapharca inaequivalvis // Mar. Ecol. Prog. Ser. 1993. V. 98. P. 115−122.
  38. Wu B., Teng H., Yang G. Hydrogen sulfide inhibits the translational expression of hypoxia-inducible factor-1α // Br. J. Pharmacol. 2012. V. 167. № 7. P. 1492–1505.
  39. Yusseppone M.S., Rocchetta I., Sabatini S.E., Luquet C.M. Inducing the alternative oxidase forms part of the molecular strategy of anoxic survival in freshwater bivalves // Front Physiol. 2018. V. 9. Art. ID 100. https://doi.org/10.3389/fphys.2018.00100

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2. Fig. 1. Succinate dehydrogenase (SDH) activity in anadara tissues (1 – normoxia; 2 – acute hypoxia; 3 – hydrogen sulfide load; *p< 0.05 relative to control; *p< 0.05 relative to control; n = 9).

Жүктеу (154KB)
3. Fig. 2. Pool of adenylates in anadara tissues (1 – normoxia; 2 – acute hypoxia; 3 – hydrogen sulfide load; n = 9).

Жүктеу (119KB)
4. Fig. 3. Content of individual fractions of adenylates (ATP, ADP, AMP) in anadara tissues (1 – normoxia; 2 – acute hypoxia; 3 – hydrogen sulfide load; *p< 0.05 relative to control; n = 9).

Жүктеу (317KB)
5. Fig. 4. Adenylate energy charge (AEC) in anadara tissues (1 – normoxia; 2 – acute hypoxia; 3 – hydrogen sulfide load; *p< 0.05 relative to control; n = 9).

Жүктеу (131KB)

© The Russian Academy of Sciences, 2024