Computer Simulation of a Silicene Anode on a Silicone Carbide Substrate

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

The structures of two-layer silicene and the 4H-modified silicon carbide (SiC) film supporting it, which act as the anode of a lithium-ion battery, are studied by the molecular dynamics method. The behavior of such a combined anode is considered under conditions of its vertical filling with lithium. The silicene sheets contain vacancy defects in the form of bi-, tri-, and hexavacancies. Lithium ions directed perpendicularly to the silicene plane deposited on the silicene sheets remain in the silicene channel and partially penetrate the substrate surface. The vertical displacements of atoms in the top sheet of silicene after lithium intercalation significantly exceed the corresponding displacements in the bottom sheet in contact with the substrate. The construction of Voronoi polyhedra (VP) separately for the Si- and C-subsystems of SiC make it possible to reveal the structural features of each of the subsystems of the studied two-dimensional layered structure.

Авторлар туралы

A. Galashev

Institute of High Temperature Electrochemistry, Ural Branch, Russian Academy of Sciences, Yekaterinburg, Russia; Yeltsin Ural Federal University, Yekaterinburg, Russia

Хат алмасуға жауапты Автор.
Email: galashev@ihte.uran.ru
Россия, Екатеринбург; Россия, Екатеринбург

Әдебиет тізімі

  1. Galashev A.Y., Ivanichkina K.A. // Phys. Chem. Chem. Phys. 2019. V. 21. № 23. P. 12310; https://doi.org/10.1039/C9CP01571J
  2. Galashev A., Ivanichkina K., Katin K., Maslov M. // Computation. 2019. V. 7. P. 60; https://doi.org/10.3390/computation7040060Y
  3. Yang Y., Ren J.G., Wang X. et al. // Nanoscale. 2013. V. 5. № 18. P. 8689; https://doi.org/10.1039/C3NR02788K
  4. Qi C., Li S., Yang Z. et al. // Carbon. 2022. V. 186. P. 530; https://doi.org/10.1016/j.carbon.2021.10.062
  5. Chang X.H., Li W., Yang J.F. et al. // J. Mater. Chem. A. 2015. V. 3. № 7. P. 3522; https://doi.org/10.1039/C4TA06334A
  6. Kumari T.S., Jeyakumar D., Kumar T.P. // RSC Adv. 2013. V. 3. № 35. P. 15028; https://doi.org/10.1039/C3RA40798E
  7. Peng Q., Wen X.-D., De S. // Ibid. 2013. V. 3. P. 13772; https://doi.org/10.1039/C3RA41347K
  8. Yoo S.H., Lee B., Kang K. // Nanotechnology. 2021. V. 32. № 29. P. 295702; https://doi.org/10.1088/1361-6528/abf26d
  9. Wortman J.J., Evans R.A. // J. Appl. Phys. 1965. V. 36. P. 153; https://doi.org/10.1063/1.1713863
  10. Galashev A.E., Rakhmanova O.R., Ivanichkina K.A., Zaikov Y.P. // Lett. Mater. 2018. V. 8. № 4. P. 463; https://doi.org/10.22226/2410-3535-2018-4-463-467
  11. Galashev A.Y., Ivanichkina K.A., Rakhmanova O.R. // Comput. Mater. Sci. 2021. V. 200. P. 110771; https://doi.org/10.1016/j.commatsci.2021.110771
  12. Galashev A.Y. // Sol. St. Ionics 2020. V. 357. P. 115463; https://doi.org/10.1016/j.ssi.2020.115463
  13. Галашев А.Е., Рахманова О.Р., Исаков А.В. // Хим. физика. 2020. Т. 39. № 7. С.72; https://doi.org/10.1134/S1990793120060044
  14. Галашев А.Е., Рахманова О.Р., Зайков Ю.П. // ФТТ. 2016. Т. 58. № 9. С. 1786; http://elibrary.ru/item.asp?id=27368752
  15. Галашев А.Е., Рахманова О.Р. // Теплофизика высоких температур. 2016. Т. 54. № 1. С. 13; https://doi.org/10.7868/S0040364415050129
  16. Galashev A.Y., Ivanichkina K.A., Vorob’ev A.S. et al. // Intern. J. Hydr. Ener. 2021. V. 46. № 32. P. 17019; https://doi.org/10.1016/j.ijhydene.2020.11.225
  17. Galashev A.Y. // Intern. J. Comp. Methods. 2021. V. 18. № 09. P. 2 150 032; https://doi.org/10.1142/S0219876221500328
  18. Галашев А.Е., Рахманова О.Р., Катин К.П., Маслов М.М., Зайков Ю.П. // Хим. физика. 2020. Т. 39. № 11. С. 80; https://doi.org/10.31857/S0207401X20110047
  19. Гришин М.В., Гатин А.К., Сарвадий С.Ю. и др. // Хим. физика. 2020. Т. 39. № 7. С. 63; https://doi.org/10.31857/S0207401X20070067
  20. Дохликова Н.В., Гатин А.К., Сарвадий С.Ю. и др. // Хим. физика. 2021. Т. 40. № 7. С. 67; https://doi.org/10.31857/S0207401X21070025
  21. Zhang H.T., Xu H. // Sol. St. Ionics. 2014. V. 263. P. 23; https://doi.org/10.1016/j.ssi.2014.04.020
  22. Hu Y.W., Liu X.S., Zhang X.P. et al. // Electrochim. Acta. 2016. V. 190. P. 33; https://doi.org/10.1016/j.electacta.2015.12.211
  23. Shiratani M., Kamataki K., Uchida G. et al. // Mater. Res. Soc. Symp. Proc. 2014. V. 1678. P. 7; https://doi.org/10.1557/opl.2014.742
  24. Rajapakse M., Karki B., Abu U.O. et al. // Npj 2D Mater. Appl. 2021. V. 5. P. 30; https://doi.org/10.1038/s41699-021-00211-6
  25. Nuruzzaman Md., Ariful Islam M., Ashraful Alam M., Hadi Shah M.A., Tanveer Karim A.M.M. // Intern. J. Eng. Res. Appl. 2015 V. 5. № 5. P. 48; ISSN: 2248-9622 (electronic)
  26. Kawahara K., Shirasawa T., Arafune R. et al. // Surf. Sci. 2014. V. 623. P. 25; https://doi.org/10.1016/j.susc.2013.12.013
  27. Галашев А.Е., Иваничкина К.А. // ЖФХ. 2019. Т. 93. № 4. С. 601; https://doi.org/10.1134/S0044453719040137
  28. Galashev A.Y., Ivanichkina K.A. // ChemElectroChem. 2019. V. 6. № 5. P. 1525; https://doi.org/10.1002/celc.201900119
  29. Galashev A.Y., Ivanichkina K.A. // J. Electrochem. Soc. 2018. V. 165. № 9. P. A1788; https://doi.org/10.1149/2.0751809jes
  30. Галашев А.Е., Рахманова О.Р., Иваничкина К.А. // ЖСХ. 2018. Т. 59. № 4. С. 914; https://doi.org/10.1134/S0022476618040194
  31. Galashev A.Y., Ivanichkina K.A., Katin K.P., Maslov M.M. // ACS Omega. 2020. V. 5. № 22. P. 13 207; https://doi.org/10.1021/acsomega.0c01240
  32. Tersoff J. // Phys. Rev. B. 1988. V. 38. № 14. P. 9902; https://doi.org/10.1103/PhysRevB.38.9902
  33. Fang T.-E., Wu J.-H. // Comput. Mater. Sci. 2008. V. 43. № 4. P. 785; https://doi.org/10.1016/j.commatsci.2008.01.066
  34. Song M.K., Hong S.D., Kyoung T.N. // J. Electrochem. Soc. 2001. V. 148. № 10. P. A1159; https://doi.org/10.1149/1.1402118
  35. Pan Y., Gover Y.A. // J. Phys. Commun. 2018. V. 2. № 11. P. 115026; https://doi.org/10.1088/2399-6528/aae2ec
  36. Plimpton S. // J. Comput. Phys. 1995. V. 117. № 1. P. 1; https://doi.org/10.1006/jcph.1995.1039
  37. Галашев А.Е., Иваничкина К.А. // ФТТ. 2019. Т. 61. № 2. С. 365; https://doi.org/10.1134/S1063783419020136
  38. Zhao K., Tritsaris G.A., Pharr M. et al. // Nano Lett. 2012. V. 12. № 8. P. 4397; https://doi.org/10.1021/nl302261w
  39. Kushima A., J. Huang Y., Li J. // ACS Nano. 2012. V. 6. № 11. P. 9425; https://doi.org/10.1021/nn3037623
  40. Levitas V.I., Attariani H. // Sci. Rep. 2013. V. 3. P. 1615; https://doi.org/10.1038/srep01615
  41. Sukharev V., Zschech E., Nix W.D. // J. Appl. Phys. 2007. V. 102. № 5. P. 053505; https://doi.org/10.1063/1.2775538
  42. Gao Y.F., Cho M., Zhou M. // J. Mech. Sci. Technol. 2013. V. 27. P. 1205; https://doi.org/10.1007/s12206-013-0401-7
  43. Bucci G., Nadimpalli S.P.V., Sethuraman V.A., Bower A.F., Guduru P.R. // J. Mech. Phys. Sol 2014. V. 62. P. 276; https://doi.org/10.1016/j.jmps.2013.10.005
  44. Chakraborty J., Please C. P., Goriely A., Chapman S.J. // Intern. J. Sol. Struct. 2015. V. 54. P. 66; https://doi.org/10.1016/j.ijsolstr.2014.11.006
  45. Mortazavia B., Dianatb A., Cunibertib G., Rabczuka T. // Electrochim. Acta. 2016. V. 213. P. 865. https://doi.org/10.1016/j.electacta.2016.08.027
  46. Calcagno L., Musumeci P., Roccaforte F., Bongiorno C., Foti G. // Appl. Surf. Sci. 2001. V. 184. № 1–4. P. 123; https://doi.org/10.1016/S0169-4332(01)00487-1

© А.Е. Галашев, 2023