Computer Simulation of a Silicene Anode on a Silicone Carbide Substrate
- Авторлар: Galashev A.E.1,2
-
Мекемелер:
- Institute of High Temperature Electrochemistry, Ural Branch, Russian Academy of Sciences, Yekaterinburg, Russia
- Yeltsin Ural Federal University, Yekaterinburg, Russia
- Шығарылым: Том 42, № 2 (2023)
- Беттер: 49-59
- Бөлім: Электрические и магнитные свойства материалов
- URL: https://gynecology.orscience.ru/0207-401X/article/view/674901
- DOI: https://doi.org/10.31857/S0207401X2302005X
- EDN: https://elibrary.ru/IWOPGN
- ID: 674901
Дәйексөз келтіру
Аннотация
The structures of two-layer silicene and the 4H-modified silicon carbide (SiC) film supporting it, which act as the anode of a lithium-ion battery, are studied by the molecular dynamics method. The behavior of such a combined anode is considered under conditions of its vertical filling with lithium. The silicene sheets contain vacancy defects in the form of bi-, tri-, and hexavacancies. Lithium ions directed perpendicularly to the silicene plane deposited on the silicene sheets remain in the silicene channel and partially penetrate the substrate surface. The vertical displacements of atoms in the top sheet of silicene after lithium intercalation significantly exceed the corresponding displacements in the bottom sheet in contact with the substrate. The construction of Voronoi polyhedra (VP) separately for the Si- and C-subsystems of SiC make it possible to reveal the structural features of each of the subsystems of the studied two-dimensional layered structure.
Негізгі сөздер
Авторлар туралы
A. Galashev
Institute of High Temperature Electrochemistry, Ural Branch, Russian Academy of Sciences, Yekaterinburg, Russia; Yeltsin Ural Federal University, Yekaterinburg, Russia
Хат алмасуға жауапты Автор.
Email: galashev@ihte.uran.ru
Россия, Екатеринбург; Россия, Екатеринбург
Әдебиет тізімі
- Galashev A.Y., Ivanichkina K.A. // Phys. Chem. Chem. Phys. 2019. V. 21. № 23. P. 12310; https://doi.org/10.1039/C9CP01571J
- Galashev A., Ivanichkina K., Katin K., Maslov M. // Computation. 2019. V. 7. P. 60; https://doi.org/10.3390/computation7040060Y
- Yang Y., Ren J.G., Wang X. et al. // Nanoscale. 2013. V. 5. № 18. P. 8689; https://doi.org/10.1039/C3NR02788K
- Qi C., Li S., Yang Z. et al. // Carbon. 2022. V. 186. P. 530; https://doi.org/10.1016/j.carbon.2021.10.062
- Chang X.H., Li W., Yang J.F. et al. // J. Mater. Chem. A. 2015. V. 3. № 7. P. 3522; https://doi.org/10.1039/C4TA06334A
- Kumari T.S., Jeyakumar D., Kumar T.P. // RSC Adv. 2013. V. 3. № 35. P. 15028; https://doi.org/10.1039/C3RA40798E
- Peng Q., Wen X.-D., De S. // Ibid. 2013. V. 3. P. 13772; https://doi.org/10.1039/C3RA41347K
- Yoo S.H., Lee B., Kang K. // Nanotechnology. 2021. V. 32. № 29. P. 295702; https://doi.org/10.1088/1361-6528/abf26d
- Wortman J.J., Evans R.A. // J. Appl. Phys. 1965. V. 36. P. 153; https://doi.org/10.1063/1.1713863
- Galashev A.E., Rakhmanova O.R., Ivanichkina K.A., Zaikov Y.P. // Lett. Mater. 2018. V. 8. № 4. P. 463; https://doi.org/10.22226/2410-3535-2018-4-463-467
- Galashev A.Y., Ivanichkina K.A., Rakhmanova O.R. // Comput. Mater. Sci. 2021. V. 200. P. 110771; https://doi.org/10.1016/j.commatsci.2021.110771
- Galashev A.Y. // Sol. St. Ionics 2020. V. 357. P. 115463; https://doi.org/10.1016/j.ssi.2020.115463
- Галашев А.Е., Рахманова О.Р., Исаков А.В. // Хим. физика. 2020. Т. 39. № 7. С.72; https://doi.org/10.1134/S1990793120060044
- Галашев А.Е., Рахманова О.Р., Зайков Ю.П. // ФТТ. 2016. Т. 58. № 9. С. 1786; http://elibrary.ru/item.asp?id=27368752
- Галашев А.Е., Рахманова О.Р. // Теплофизика высоких температур. 2016. Т. 54. № 1. С. 13; https://doi.org/10.7868/S0040364415050129
- Galashev A.Y., Ivanichkina K.A., Vorob’ev A.S. et al. // Intern. J. Hydr. Ener. 2021. V. 46. № 32. P. 17019; https://doi.org/10.1016/j.ijhydene.2020.11.225
- Galashev A.Y. // Intern. J. Comp. Methods. 2021. V. 18. № 09. P. 2 150 032; https://doi.org/10.1142/S0219876221500328
- Галашев А.Е., Рахманова О.Р., Катин К.П., Маслов М.М., Зайков Ю.П. // Хим. физика. 2020. Т. 39. № 11. С. 80; https://doi.org/10.31857/S0207401X20110047
- Гришин М.В., Гатин А.К., Сарвадий С.Ю. и др. // Хим. физика. 2020. Т. 39. № 7. С. 63; https://doi.org/10.31857/S0207401X20070067
- Дохликова Н.В., Гатин А.К., Сарвадий С.Ю. и др. // Хим. физика. 2021. Т. 40. № 7. С. 67; https://doi.org/10.31857/S0207401X21070025
- Zhang H.T., Xu H. // Sol. St. Ionics. 2014. V. 263. P. 23; https://doi.org/10.1016/j.ssi.2014.04.020
- Hu Y.W., Liu X.S., Zhang X.P. et al. // Electrochim. Acta. 2016. V. 190. P. 33; https://doi.org/10.1016/j.electacta.2015.12.211
- Shiratani M., Kamataki K., Uchida G. et al. // Mater. Res. Soc. Symp. Proc. 2014. V. 1678. P. 7; https://doi.org/10.1557/opl.2014.742
- Rajapakse M., Karki B., Abu U.O. et al. // Npj 2D Mater. Appl. 2021. V. 5. P. 30; https://doi.org/10.1038/s41699-021-00211-6
- Nuruzzaman Md., Ariful Islam M., Ashraful Alam M., Hadi Shah M.A., Tanveer Karim A.M.M. // Intern. J. Eng. Res. Appl. 2015 V. 5. № 5. P. 48; ISSN: 2248-9622 (electronic)
- Kawahara K., Shirasawa T., Arafune R. et al. // Surf. Sci. 2014. V. 623. P. 25; https://doi.org/10.1016/j.susc.2013.12.013
- Галашев А.Е., Иваничкина К.А. // ЖФХ. 2019. Т. 93. № 4. С. 601; https://doi.org/10.1134/S0044453719040137
- Galashev A.Y., Ivanichkina K.A. // ChemElectroChem. 2019. V. 6. № 5. P. 1525; https://doi.org/10.1002/celc.201900119
- Galashev A.Y., Ivanichkina K.A. // J. Electrochem. Soc. 2018. V. 165. № 9. P. A1788; https://doi.org/10.1149/2.0751809jes
- Галашев А.Е., Рахманова О.Р., Иваничкина К.А. // ЖСХ. 2018. Т. 59. № 4. С. 914; https://doi.org/10.1134/S0022476618040194
- Galashev A.Y., Ivanichkina K.A., Katin K.P., Maslov M.M. // ACS Omega. 2020. V. 5. № 22. P. 13 207; https://doi.org/10.1021/acsomega.0c01240
- Tersoff J. // Phys. Rev. B. 1988. V. 38. № 14. P. 9902; https://doi.org/10.1103/PhysRevB.38.9902
- Fang T.-E., Wu J.-H. // Comput. Mater. Sci. 2008. V. 43. № 4. P. 785; https://doi.org/10.1016/j.commatsci.2008.01.066
- Song M.K., Hong S.D., Kyoung T.N. // J. Electrochem. Soc. 2001. V. 148. № 10. P. A1159; https://doi.org/10.1149/1.1402118
- Pan Y., Gover Y.A. // J. Phys. Commun. 2018. V. 2. № 11. P. 115026; https://doi.org/10.1088/2399-6528/aae2ec
- Plimpton S. // J. Comput. Phys. 1995. V. 117. № 1. P. 1; https://doi.org/10.1006/jcph.1995.1039
- Галашев А.Е., Иваничкина К.А. // ФТТ. 2019. Т. 61. № 2. С. 365; https://doi.org/10.1134/S1063783419020136
- Zhao K., Tritsaris G.A., Pharr M. et al. // Nano Lett. 2012. V. 12. № 8. P. 4397; https://doi.org/10.1021/nl302261w
- Kushima A., J. Huang Y., Li J. // ACS Nano. 2012. V. 6. № 11. P. 9425; https://doi.org/10.1021/nn3037623
- Levitas V.I., Attariani H. // Sci. Rep. 2013. V. 3. P. 1615; https://doi.org/10.1038/srep01615
- Sukharev V., Zschech E., Nix W.D. // J. Appl. Phys. 2007. V. 102. № 5. P. 053505; https://doi.org/10.1063/1.2775538
- Gao Y.F., Cho M., Zhou M. // J. Mech. Sci. Technol. 2013. V. 27. P. 1205; https://doi.org/10.1007/s12206-013-0401-7
- Bucci G., Nadimpalli S.P.V., Sethuraman V.A., Bower A.F., Guduru P.R. // J. Mech. Phys. Sol 2014. V. 62. P. 276; https://doi.org/10.1016/j.jmps.2013.10.005
- Chakraborty J., Please C. P., Goriely A., Chapman S.J. // Intern. J. Sol. Struct. 2015. V. 54. P. 66; https://doi.org/10.1016/j.ijsolstr.2014.11.006
- Mortazavia B., Dianatb A., Cunibertib G., Rabczuka T. // Electrochim. Acta. 2016. V. 213. P. 865. https://doi.org/10.1016/j.electacta.2016.08.027
- Calcagno L., Musumeci P., Roccaforte F., Bongiorno C., Foti G. // Appl. Surf. Sci. 2001. V. 184. № 1–4. P. 123; https://doi.org/10.1016/S0169-4332(01)00487-1
Қосымша файлдар
