Structural and Mechanical Properties of Hydrogels Based on Polyelectrolyte Complexes of N-Succinyl-Chitosan with Poly-N,N-Diallyl-N,N-Dimethylammonium Chloride
- 作者: Bazunova M.V.1, Mustakimov R.A.1, Kulish E.I.1
-
隶属关系:
- Bashkir State University, Ufa, Russia
- 期: 卷 42, 编号 1 (2023)
- 页面: 55-63
- 栏目: Chemical physics of polymeric materials
- URL: https://gynecology.orscience.ru/0207-401X/article/view/674915
- DOI: https://doi.org/10.31857/S0207401X23010028
- EDN: https://elibrary.ru/MORFKF
- ID: 674915
如何引用文章
详细
This article studies the structural and mechanical properties of polymer hydrogels based on polyelectrolyte complexes of N-succinyl-chitosan (NSC) with poly-N,N-diallyl-N,N-dimethylammonium chloride, depending on the composition of the reaction mixture and the conditions for obtaining complexes. The types of intermolecular interaction between the components of the complexes are studied by IR spectroscopy. The causes of swelling of coacervates based on polyelectrolyte complexes of N-succinylchitosan-chitosan with poly-N,N-diallyl-N,N-dimethylammonium chloride are analyzed. The relationship between the composition of coacervates and the structural-mechanical and transport properties of the gels formed from them is established. The developed approach to create elastic-viscous systems can be implemented when creating gel-like polymeric materials capable of self-organization into systems with controlled characteristics of the structure.
作者简介
M. Bazunova
Bashkir State University, Ufa, Russia
Email: mbazunova@mail.ru
Россия, Уфа
R. Mustakimov
Bashkir State University, Ufa, Russia
Email: mbazunova@mail.ru
Россия, Уфа
E. Kulish
Bashkir State University, Ufa, Russia
编辑信件的主要联系方式.
Email: mbazunova@mail.ru
Россия, Уфа
参考
- Hoffman A.S. // Adv. Drug Delivery Rev. 2012. V. 64. P. 18; https://doi.org/10.1016/j.addr.2012.09.010
- Ruel-Garie’py E., Leroux J.C. // Eur. J. Pharmacol. 2005. V. 58. P. 409; https://doi.org/10.1016/j.ejpb.2004.03.019
- Catoira M.C., Fusaro L., Francesco D.D. et al. // J. Mater. Sci. – Mater. Med. 2019. V. 30. № 10. P. 1; https://doi.org/10.1007/s10856-019-6318-7
- Шуршина А.С., Галина А.Р., Лаздин Р.Ю. и др. // Хим. физика. 2021. Т. 40. № 7. С. 58; https://doi.org/10.31857/S0207401X21070098
- Шуршина А.С., Галина А.Р., Кулиш Е.И. // Хим. физика. 2022. Т. 41. №. 4. С. 63; https://doi.org/10.31857/S0207401X22040082
- Кабанов В.А. // Успехи химии. 2005. Т. 74. № 1. С. 5.
- Зезин А.Б., Луценко В.В., Рогачева В.Б. и др. // Высокомолекуляр. соединения. Сер. А. 1999. Т. 41. № 12. С. 1966.
- Изумрудов В.А. // Успехи химии. 2008. Т. 77. № 4. С. 401.
- Hamad F.G., Chen Q., Colby R.H. // Macromolcculos. 2018. V. 51. № 15. P. 5547–555; https://doi.org/10.1021/acs.macromol.8b00401
- Rumyantsev A.M., Jackson N.E., De Pablo J.J. // Annu. Rev. Condens. Matter Phys. 2021. V. 12. № 1. P. 155; https://doi.org/10.1146/annurev-conmatphys-042020-113457
- Shahid B., Yin Y.T., Ramesh S. et al. // Polym. Degrad. Stab. 2017. V. 139. P. 38; https://doi.org/10.1016/j.polymdegradstab.2017.03.014
- Mart’ınez-Ruvalcaba A., Chornet E., Rodrigue D. // Carbohydr. Polym. 2007. V. 67. № 4. P. 586; https://doi.org/10.1016/j.carbpol.2006.06.033
- Mura C., Nácher A., Merino V. et al. // Colloids Surf., B. 2012. V. 94. P. 199; https://doi.org/10.1016/j.colsurfb.2012.01.030
- De la Torre P.M., Torrado S. // Biomaterials. 2003. V. 24. № 8. P. 1459; https://doi.org/10.1016/S0142-9612(02)00541-0
- Сливкин Д.А., Лапенко В.Л., Сафонова О.А. и др. // Вестн. Воронежского гос. ун-та. 2011. № 2. С. 214.
- Kato Y., Onishi H., Mashida Y. // Biomaterials. 2004. V. 25. № 5. P. 907; https://doi.org/10.1016/s0142-9612(03)00598-2
- Yan C., Gu J., Hou D. et al. // Intern. J. Biol. Macromol. 2015. V. 72. P. 751; https://doi.org/10.1016/j.ijbiomac.2014.09.031
- Шуршина А.С., Базунова М.В., Чернова В.В. и др. // Высокомолекуляр. соединения. Сер. А. 2020. Т. 62. № 4. С. 294; https://doi.org/10.31857/S2308112020040100
- Базунова М.В., Мустакимов Р.А., Кулиш Е.И. // Хим. физика. 2021. Т. 40. № 9. С. 72; https://doi.org/10.31857/S0207401X21090028
- Sanches L.M., Petri D.F.S., Melo Carrasco L.D. et al. // J. Nanobiotechnol. 2015. V. 13. № 1. P. 1; https://doi.org/10.1186/s12951-015-0123-3
- Бадыкова Л.А., Мударисова Р.Х., Колесов С.В. // Хим. физика. 2020. Т. 39. № 1. С. 88; https://doi.org/10.31857/S0207401X20010033
- Базунова М.В., Мустакимов Р.А., Бакирова Э.Р. // ЖПХ. 2022. Т. 95. № 1. С. 42; https://doi.org/10.31857/S0044461822010054
- Васильев В.П. Аналитическая химия. Т. 1. М.: Высшая школа, 1989. С. 256.
- Тагер А.А. Физико-химия полимеров. Изд. 4-е, перераб. и дополн. M.: Науч. мир, 2007.
- Ferreira S.B., Moço T.D., Borghi-Pangoni F.B. et al. // J. Mech. Behav. Biomed. Mater. 2016. V. 55. P. 164; https://doi.org/10.1016/j.jmbbm.2015.10.026
- Ильин С.О., Куличихин В.Г., Малкин А.Я. // Высокомолекуляр. соединения. Сер. А. 2013. Т. 55. № 8. С. 1071; https://doi.org/10.7868/S0507547513070052
- Karvinen J., Ihalainen T.O., Calejo M.T. et al. // Mater. Sci. Eng., C. 2019. V. 94. P. 1056; https://doi.org/10.1016/j.msec.2018.10.048
补充文件
