The effect of hypochlorite-induced fibrinogen oxidation on the protein structure, fibrin self-assembly and fibrinolysis

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The article is dedicated to the structural-functional damage of fibrinogen treated with HOCl in the concentration range (10–100 µM). The MS/MS method detected 15 modified amino acid residues with a dose-dependent susceptibility to the oxidizing agent. Using turbidity measurements and confocal laser scanning microscopy, it has been shown that fibrinogen oxidation by 25–100 µM HOCl leads to the denser fibrin gel formation, as well as delayed polymerization onset and a decrease in the slope of the polymerization curve, presumably due to conformational changes of the protein. At lower HOCl concentration (10 µM), at least six amino acid residues were substantially modified (9–29%), but functionally such modified protein was not distinguishable from the native one. The detected amino acid residues are assumed to be ROS scavengers that prevent fibrinogen functions alteration.

全文:

受限制的访问

作者简介

L. Yurina

Emanuel Institute of Biochemical Physics, Russian Academy of Sciences

编辑信件的主要联系方式.
Email: lyu.yurina@gmail.com
俄罗斯联邦, Moscow

A. Vasilyeva

Emanuel Institute of Biochemical Physics, Russian Academy of Sciences

Email: lyu.yurina@gmail.com
俄罗斯联邦, Moscow

E. Evtushenko

Lomonosov Moscow State University

Email: lyu.yurina@gmail.com

Faculty of Chemistry

俄罗斯联邦, Moscow

E. Gavrilina

Emanuel Institute of Biochemical Physics, Russian Academy of Sciences

Email: lyu.yurina@gmail.com
俄罗斯联邦, Moscow

S. Obydennyi

Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology of Ministry of Healthcare of the Russian Federation; Centre for Theoretical Problems of Physicochemical Pharmacology

Email: lyu.yurina@gmail.com
俄罗斯联邦, Moscow; Moscow

I. Chabin

Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology of Ministry of Healthcare of the Russian Federation; Sechenov First Moscow State Medical University (Sechenov University)

Email: lyu.yurina@gmail.com
俄罗斯联邦, Moscow; Moscow

M. Indeykina

Emanuel Institute of Biochemical Physics, Russian Academy of Sciences

Email: lyu.yurina@gmail.com
俄罗斯联邦, Moscow

A. Kononikhin

Talrose Institute for Energy Problems of Chemical Physics, N.N. Semenov Federal Center of Chemical Physics, Russian Academy of Sciences; Skolkovo Institute of Science and Technology

Email: lyu.yurina@gmail.com
俄罗斯联邦, Moscow; Moscow

E. Nikolaev

Talrose Institute for Energy Problems of Chemical Physics, N.N. Semenov Federal Center of Chemical Physics, Russian Academy of Sciences; Skolkovo Institute of Science and Technology

Email: lyu.yurina@gmail.com
俄罗斯联邦, Moscow; Moscow

M. Rosenfeld

Emanuel Institute of Biochemical Physics, Russian Academy of Sciences

Email: lyu.yurina@gmail.com
俄罗斯联邦, Moscow

参考

  1. K. M. Weigandt, N. White, D. Chung, et al., Biophys. J. 103 (11), 2399–2407 (2012). https://doi.org/10.1016/j.bpj.2012.10.036
  2. S. J. Klebanoff, J Leukocyte Biology. 77 (5), 598–625 (2005). https://doi.org/10.1189/jlb.1204697
  3. C. L. Hawkins, D. I. Pattison, M. J. Davies, Amino Acids. 5 (3–4), 259–274 (2003). https://doi.org/10.1007/s00726-003-0016-x
  4. L. V. Yurina, A. D. Vasilyeva, A. E. Bugrova, et al., Dokl. Biochem. Biophys. 484 (1), 37–41 (2019). https://doi.org/10.1134/S1607672919010101
  5. L. V. Yurina, A. D. Vasilyeva, M. I. Indeykina, et al., Free Radical Res. 53( 4), 430–455 (2019). https://doi.org/10.1080/10715762.2019.1600686
  6. A. D. Vasilieva, L. V. Yurina, D. Y. Azarova, et al., Russ. J. Phys. Chem. B 16, 118–122 (2022). https://doi.org/10.1134/S1990793122010316
  7. N. J. White, Y. Wang, X. Fu, et al., Free Rad. Biol. Med. 96, 181–189 (2016). https://doi.org/10.1016/j.freeradbiomed.2016.04.023
  8. W. H. Lau, N. J. White, T. W. Yeo, et al., Sci. Rep. 11(1), 15691 (2021). https://doi.org/10.1038/s41598-021-94401-3
  9. A. N. Shchegolikhin, A. D. Vasilyeva, L. V. Yurina, et al., Russ. J. Phys. Chem. B 15 (1), 123–130 (2021). https://doi.org/10.1134/S1990793121010279
  10. L. A. Wasserman, L. V. Yurina, A. D. Vasilieva, et al., Russ. J. Phys. Chem. B 15 (6), 1036 (2021). https://doi.org/10.1134/S1990793121060105
  11. E. S. Vasiliev, G. V. Karpov, D. K. Shartava, et al., Russ. J. Phys. Chem. B 16 (3), 388–394 (2022). https://doi.org/10.1134/S1990793122030113
  12. J. W. Weisel, C. Nagaswami, Biophys. J. 63 (1), 111–128 (1992). https://doi.org/10.1016/S0006-3495(92)81594-1
  13. J. Kaufmanova, J. Stikarova, A. Hlavackova, et al., Antioxidants 10 (6), 923 (2021). https://doi.org/10.3390/antiox10060923
  14. D. V. Sakharov, J. F. Nagelkerke, D. C. Rijken, J. Biol. Chem. 271 (4), 2133–2138 (1996). https://doi.org/10.1074/jbc.271.4.2133
  15. I. Pechik, J. Madrazo, M. W. Mosesson, et al., Proc. Natl. Acad. Sci. U.S.A. 101 (9), 2718–2723 (2004). https://doi.org/10.1073/pnas.0303440101
  16. J. W. Weisel, R. I. Litvinov, Fibrous Proteins: Struct. Mechan. Cham: Springer International Publishing, 82, 405–456 (2017). https://doi.org/10.1007/978-3-319-49674-0_13
  17. L. Medved, J. W. Weisel, Thromb Haemost. 122 (8), 1265–1278 (2022). https://doi.org/10.1055/a-1719-5584

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Schematic representation of fibrinogen polypeptide chains with modification sites marked.

下载 (140KB)
3. Fig. 2. Representative curves of thrombin-catalyzed fibrin polymerization (a) and fibrinolysis (b) at the following [HOCl] values ​​in μM: 1 – 0, 2 – 10, 3 – 25, 4 – 50, 5 – 100.

下载 (151KB)
4. Fig. 3. Changes in the static structure of the fibrin clot (left column; at HOCl concentrations of 0, 10, 25, 50 μM) and the dynamics of plasmin(ogen) distribution during fibrinolysis (columns 2–4).

下载 (191KB)

版权所有 © Russian Academy of Sciences, 2024