Propargyl-substituted furazanoazepines: synthesis, structure, enthalpy of formation, ballistic efficiency

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

7-Propargyl-7H-difurazano[3,4-b :3′,4′-f]furoxano[3″,4″-d]azepine (Az(O)Prg) and 7-propargyl-7H-trifurazano[3,4-b :3′,4′-d :3″,4″-f]azepine (AzPrg) as potential dispersants of solid fuels for gas-generating engines were synthesized for the first time. Their molecular structure, enthalpies of combustion and formation are determined. The relative aircraft flight range is estimated when using Az(O)Prg and AzPrg as fuel dispersants.

Texto integral

Acesso é fechado

Sobre autores

D. Lempert

Institute of Problems of Chemical Physics, Russian Academy of Sciences

Autor responsável pela correspondência
Email: lempert@icp.ac.ru
Rússia, Chernogolovka

E. Ignatieva

Institute of Problems of Chemical Physics, Russian Academy of Sciences

Email: lempert@icp.ac.ru
Rússia, Chernogolovka

A. Stepanov

“Tekhnolog” Special Design and Technological Bureau

Email: lempert@icp.ac.ru
Rússia, St. Petersburg

D. Dashko

“Tekhnolog” Special Design and Technological Bureau

Email: lempert@icp.ac.ru
Rússia, St. Petersburg

A. Kazakov

Institute of Problems of Chemical Physics, Russian Academy of Sciences

Email: lempert@icp.ac.ru
Rússia, Chernogolovka

A. Nabatova

Institute of Problems of Chemical Physics, Russian Academy of Sciences

Email: lempert@icp.ac.ru
Rússia, Chernogolovka

G. Shilov

Institute of Problems of Chemical Physics, Russian Academy of Sciences

Email: lempert@icp.ac.ru
Rússia, Chernogolovka

G. Lagodzinskaya

Institute of Problems of Chemical Physics, Russian Academy of Sciences

Email: lempert@icp.ac.ru
Rússia, Chernogolovka

D. Korchagin

Institute of Problems of Chemical Physics, Russian Academy of Sciences

Email: lempert@icp.ac.ru
Rússia, Chernogolovka

S. Aldoshin

Institute of Problems of Chemical Physics, Russian Academy of Sciences

Email: lempert@icp.ac.ru
Rússia, Chernogolovka

Bibliografia

  1. D. E. Chavez, Topics in Heterocyclic Chemistry, (Eds.: O. V. Larionov), Berlin: Springer, 53, 1–27 (2017). https://doi.org/10.1007/7081_2017_5
  2. M. S. Klenov., A. A. Guskov, O. V. Anikin et al., Angew. Chem., 55 (38), 11472 (2016). https://doi.org/10.1002/anie.201605611
  3. T. M. Klapötke, Chemistry of High-Energy Materials. 3rd ed. Berlin: de Gruyter GmbH, 2015. ISBN-10: 3110439328
  4. H. Wei, H. Gao, J. M. Shreeve, Chem. Eur. J., 20 (51), 16943 (2014). https://doi.org/10.1002/chem.201405122
  5. A. M. Churakov, S. L. Ioffe, V. A. Tartakovsky, Mendeleev Commun., 6 (1), 20 (1996). https://doi.org/10.1070/MC1996v006n01ABEH000560
  6. A. M. Churakov, S. L. Ioffe, V. A. Tartakovsky, Mendeleev Commun., 5 (6), 227 (1995). https://doi.org/10.1070/MC1995v005n06ABEH000539
  7. D. E. Chavez, D. A. Parrish, L. Mitchell, G. H. Imler, Angew. Chem., Int. Ed., 56 (13), 3575 (2017). https://doi.org/10.1002/anie.201612496
  8. A. B. Sheremetev, V. O. Kulagina, N. S. Aleksandrova et al., Propellants, Explosives, Pyrotechnics., 23, 142 (1998).
  9. A. I. Stepanov, A. A. Astrat’ev, D. V. Dashko et al., Russian Chemical Bulletin, International Edition., 61 (5), 1024 (2012). https://doi.org/10.1007/s11172-012-0132-4
  10. A. A. Astrat′ev, D. V. Dashko, A. I. Stepanov, Central European Journal of Chemistry, 10 (4), 1087 (2012). https://doi.org/10.2478/s11532-012-0020-7
  11. A. I. Stepanov, D. V. Dashko, A. A. Astrat′ev, Central European Journal of Energetic Materials., 9, (4), 329 (2012).
  12. D. B. Lempert, A. I. Kazakov, V. S. Sannikov et al., Comb. Explos. Shock Waves, 55 (2), 148 (2019). https://doi.org/10.1134/S0010508219020035
  13. L. S. Yanovskii, D. B. Lempert, V. V. Raznoschikov, I. S. Aver’kov, Russian Journal of Applied Chemistry, 92, (3), 367 (2019). https://doi.org/10.1134/S1070427219030078
  14. D. B. Lempert, E. L. Ignatieva, A. I. Stepanov et al, Russ. J. Phys. Chem. B, 17(1), 1 (2023); https://doi.org/10.1134/S1990793123010256
  15. A. I. Kazakov, D. B. Lempert, A. V. Nabatova et al, Russ. J. Phys. Chem. B, 17(3), 673 (2023); https://doi.org/10.1134/S1990793123030041
  16. D. B. Lempert, E. L. Ignatieva, A. I. Stepanov et al, Russ. J. Phys. Chem. B, 17(3), 702 (2023); https://doi.org//10.1134/S1990793123030065
  17. A. I. Kazakov, D. B. Lempert, A. V. Nabatova et al, Russ. J. Phys. Chem. B, 17(5), 1083 (2023); https://doi.org/101134/S1990793123050032
  18. D. B. Lempert, E. L. Ignatieva, A. I. Stepanov et al, Russ. J. Phys. Chem. B, 17(5), 1106 (2023); https://doi.org/101134/S1990793123050068
  19. G. M. Sheldrick, Acta Cryst. C, 71(2), 3 (2015). https://doi.org/10.1107/S2053229614024218
  20. Ya. O. Inozemtsev, A. B. Vorobjov, A. V. Inozemtsev, Yu. N. Matyushin, Gorenje i vzvast, 7, 260 (2014).
  21. N. E. Leonov, S. E. Semenov, M. S. Klenov et. al., Mendeleev Commun., 31, 789 (2021). https://doi.org/ 10.1016/j.mencom.2021.11.006
  22. A. Gavezzotti, Acc. Chem. Res., 27, 309 (1994).
  23. A. Gavezzotti, G. Filippini, J. Phys. Chem., 98 (18), 4831 (1994).
  24. F. D. Rossini. Experimental Thermochemistry. New York, 1956.
  25. V. P. Glushko, Thermal constants of substances. M.: Publishing House of the USSR Academy of Sciences, 1965.
  26. A. N. Kizin, P. A. Dvorkin, G. L. Ryzhova, Yu. A. Lebedev, Bulletin of the Academy of Sciences of the USSR. Division of Chemical Sciences, 35 (2), 343 (1986). https://doi.org/10.1007/BF00952920
  27. I. Yu. Gudkova, I. N. Zyuzin, and D. B. Lempert, Russ. J. Phys. Chem. B, 14 (2), 302 (2020). https://doi.org/10.1134/S1990793120020062
  28. V. M. Volokhov, T. S. Zyubina, A. V. Volokhov et. al., 15 (1), 12 (2021). https://doi.org/10.1134/S1990793121010127
  29. I. Yu. Gudkova, I. N. Zyuzin, and D. B. Lempert, Russ. J. Phys. Chem. B, 14 (2), 302 (2022). https://doi.org/10.1134/S1990793120020062

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Molecular structure of AzPrg. Atoms are depicted as 50% probability ellipsoids. Hydrogen atoms are not labeled.

Baixar (232KB)
3. Fig. 2. Packing of AzPrg crystal structure. Atoms are depicted as 50% probability ellipsoids.

Baixar (740KB)
4. Fig. 3. Fragment of the crystal structure of AzPrg. Atoms are represented as ellipsoids of 50% probability. Dashed lines show van der Waals interactions (contacts).

Baixar (588KB)
5. Fig. 4. Molecular structure of Az(O)Prg. Atoms are depicted as ellipsoids of 50% probability. Hydrogen atoms are not labeled.

Baixar (240KB)
6. Fig. 5. Projection of the Az(O)Prg crystal structure onto a plane along the cell axis ab.

Baixar (554KB)
7. Fig. 6. Energy and topology of the strongest pairwise intermolecular interactions in crystal structures: a - AzPrg, b - Az(O)Prg.

Baixar (466KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2024