Cell membrane cholesterol and regulation of cellular processes: new and the same old thing

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Membranes of living cells, or biological membranes, are unique molecular systems in which the functioning of all molecules is interdependent and coordinated, and disruption of this coordination can be fatal for the cell. One example of such coordination and mutual regulation is the functioning of membrane proteins, whose activity depends on their interaction with membrane lipids. This review summarizes the facts about the importance of the cholesterol component of cell membranes for the normal functioning of membrane proteins and the whole cell. This lipid component provides fine regulation of a variety of cellular functions and provides clues to understanding changes in the activity of a number of proteins under various physiologic and pathologic conditions. This review provides examples of cholesterol-dependent membrane proteins and cellular processes and discusses their role in several pathologies. Understanding the mechanisms of cholesterol-protein interactions represents a significant resource for the development of drugs that affect the cholesterol-protein interface.

Texto integral

Acesso é fechado

Sobre autores

A. Dunina-Barkovskaya

Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences

Autor responsável pela correspondência
Email: dunina.aya@gmail.com
Rússia, Moscow, 117997

Bibliografia

  1. Maxfield F.R., van Meer G. 2010. Cholesterol, the central lipid of mammalian cells. Curr. Opin. Cell Biol. 22 (4), 422–429. doi: 10.1016/j.ceb.2010.05.004
  2. Song Y., Kenworthy A.K., Sanders C.R. 2014. Cholesterol as a co-solvent and a ligand for membrane proteins. Protein Science. 23, 1–22. doi: 10.1002/pro.2385
  3. Simons K., Ikonen E. 1997. Functional rafts in cell membranes. Nature. 387, 569–572.
  4. Ali O., Szabó A. 2023. Review of eukaryote cellular membrane lipid composition, with special attention to the fatty acids. Int. J. Mol. Sci. 24 (21), 15693. doi: 10.3390/ijms242115693
  5. van Meer G., Voelker D.R., Feigenson G.W. 2008. Membrane lipids: Where they are and how they behave. Nat. Rev. Mol. Cell Biol. 9, 112−124.
  6. Huang Z., London E. 2016. Cholesterol lipids and cholesterol-containing lipid rafts in bacteria. Chem. Phys. Lipids. 199, 11–16.
  7. Guzmán-Flores J.E., Steinemann-Hernández L., González de la Vara L.E., Gavilanes-Ruiz M., Romeo T., Alvarez A.F., Georgellis D. 2019. Proteomic analysis of Escherichia coli detergent-resistant membranes (DRM). PLoS One, 14, e0223794.
  8. Rohmer M., Bouvier-Nave P., Ourisson G. 1984. Distribution of hopanoid triterpenes in prokaryotes. Microbiology. 130, 1137–1150.
  9. Sáenz J.P., Grosser D., Bradley A.S., Lagny T.J., Lavrynenko O., Broda M., Simons K. 2015. Hopanoids as functional analogues of cholesterol in bacterial membranes. Proc. Natl. Acad. Sci. USA. 112, 11971–11976.
  10. Bi Y., Guo P., Liu L., Chen L., Zhang W. 2023. Elucidation of sterol biosynthesis pathway and its co-regulation with fatty acid biosynthesis in the oleaginous marine protist Schizochytrium sp. Front. Bioeng. Biotechnol. 11, 1188461. doi: 10.3389/fbioe.2023.1188461
  11. Planas-Riverola A., Gupta A., Betegón-Putze I., Bosch N., Ibañes M., Caño-Delgado A.I. 2019. Brassinosteroid signaling in plant development and adaptation to stress. Development. 146 (5), dev151894. doi: 10.1242/dev.151894
  12. Manghwar H., Hussain A., Ali Q., Liu F. 2022. Brassinosteroids (BRs) role in plant development and coping with different stresses. Int. J. Mol. Sci. 23 (3), 1012. doi: 10.3390/ijms23031012
  13. Myers J.L., Porter M., Narwold N., Bhat K., Dauwalder B., Roman G. 2021. Mutants of the white ABCG transporter in Drosophila melanogaster have deficient olfactory learning and cholesterol homeostasis. Int. J. Mol. Sci. 22 (23), 12967. doi: 10.3390/ijms222312967
  14. Dunina-Barkovskaya A. 2022. Cholesterol-dependent cellular processes and peptides containing cholesterol-binding motifs: Possible implications for medicine. Med. Res. Arch. 11 (1). https://doi.org/10.18103/mra.v11i1.3532
  15. Weber L.W., Boll M., Stampfl A. 2004. Maintaining cholesterol homeostasis: Sterol regulatory element-binding proteins. World J. Gastroenterol. 10 (21), 3081–3087. doi: 10.3748/wjg.v10.i21.3081
  16. Martín M.G., Pfrieger F., Dotti C.G. 2014. Cholesterol in brain disease: Sometimes determinant and frequently implicated. EMBO Rep. 15 (10), 1036–1053. doi: 10.15252/embr.201439225
  17. Martín-Segura A., Ahmed T., Casadomé-Perales Á., Palomares-Perez I., Palomer E., Kerstens A., Munck S., Balschun D., Dotti C.G. 2019. Age-associated cholesterol reduction triggers brain insulin resistance by facilitating ligand-independent receptor activation and pathway desensitization. Aging Cell. 18 (3), e12932. doi: 10.1111/acel.12932
  18. Corradi V., Mendez-Villuendas E., Ingólfsson H.I., Gu R.-X., Siuda I., Melo M.N., Moussatova A., DeGagné L.J., Sejdiu B.I., Singh G., Wassenaar T.A., Delgado Magnero K., Marrink S.J., Tieleman D.P. 2018. Lipid−protein interactions are unique fingerprints for membrane proteins. ACS Cent. Sci. 4 (6), 709−717. doi: 10.1021/acscentsci.8b00143
  19. Grouleff J., Irudayam S.J., Skeby K.K., Schiøtt B. 2015. The influence of cholesterol on membrane protein structure, function, and dynamics studied by molecular dynamics simulations. Biochim. Biophys. Acta – Biomembranes. 1848 (9), 1783−1795. https://doi.org/10.1016/j.bbamem.2015.03.029
  20. Mukherjee S., Zha X., Tabas I., Maxfield F.R. 1998. Cholesterol distribution in living cells: Fluorescence imaging using dehydroergosterol as a fluorescent cholesterol analog. Biophys J. 75, 1915−1925. doi: 10.1016/S0006-3495(98)77632-5
  21. Nyholm T.K. 2015. Lipid-protein interplay and lateral organization in biomembranes. Chem. Phys. Lipids. 189, 48−55.
  22. Nyholm T.K., Ozdirekcan S., Killian J.A. 2007. How protein transmembrane segments sense the lipid environment. Biochemistry. 46, 1457–1465.
  23. Coskun U., Simons K. 2011. Cell membranes: The lipid perspective. Structure. 19 (11), 1543–1548. doi: 10.1016/j.str.2011.10.010
  24. Sezgin E., Levental I., Mayor S., Eggeling C. 2017. The mystery of membrane organization: Composition, regulation, and roles of lipid rafts. Nat. Rev. Mol. Cell. Biol. 18, 361–374.
  25. Steck T.L., Ali Tabei S.M., Lange Y. 2024. Estimating the cholesterol affinity of integral membrane proteins from experimental data. Biochemistry, 63 (1), 19–26. https://doi.org/10.1021/acs.biochem.3c00567.
  26. Steck T.L., Lange Y. 2018. Transverse distribution of plasma membrane bilayer cholesterol: Picking sides. Traffic. 19 (10), 750–760. doi: 10.1111/tra.12586
  27. Maekawa M., Fairn G.D. 2015. Complementary probes reveal that phosphatidylserine is required for the proper transbilayer distribution of cholesterol. J. Cell Sci. 128 (7), 1422–1433.
  28. Ridsdale A., Denis M., Gougeon P.Y., Ngsee J.K., Presley J.F., Zha X. 2006. Cholesterol is required for efficient endoplasmic reticulum-to-Golgi transport of secretory membrane proteins. Mol. Biol. Cell. 17 (4), 1593–1605. doi: 10.1091/mbc.e05-02-0100
  29. Muller M.P., Jiang T., Sun C., Lihan M., Pant S., Mahinthichaichan P., Trifan A., Tajkhorshid E. 2019. Characterization of lipid-protein interactions and lipid-mediated modulation of membrane protein function through molecular simulation. Chem. Rev. 19, 6086–6161. https://doi.org/10.1021/acs.chemrev.8b00608
  30. Enkavi G., Javanainen M., Kulig W., Róg T., Vattulainen I. 2019. Multiscale simulations of biological membranes: The challenge to understand biological phenomena in a living substance. Chem Rev. 119, 5607–5774. doi: 10.1021/acs.chemrev.8b00538refs
  31. Bogdanov M., Dowhan W. 2021. Functional roles of lipids in biological membranes. In: Biochemistry of Lipids, Lipoproteins and Membranes. Eds. Ridgway N.D., McLeod R.S. 7th Edition. Elsevier, p. 1–51. https://doi.org/10.1016/B978-0-12-824048-9.00020-1
  32. Pike L.J. 2003. Lipid rafts: Bringing order to chaos. J. Lipid Res. 44 (4), 655–667. doi: 10.1194/jlr.R200021-JLR200
  33. Helms J.B., Zurzolo C. 2004. Lipids as targeting signals: Lipid rafts and intracellular trafficking. Traffic. 5 (4), 247–254. doi: 10.1111/j.1600-0854.2004.0181.x
  34. Pralle A., Keller P., Florin E.L., Simons K., Hörber J.K. 2000. Sphingolipid-cholesterol rafts diffuse as small entities in the plasma membrane of mammalian cells. J. Cell Biol. 148 (5), 997–1008. doi: 10.1083/jcb.148.5.997
  35. Schumann J., Leichtle A., Thiery J., Fuhrmann H. 2011. Fatty acid and peptide profiles in plasma membrane and membrane rafts of PUFA supplemented RAW264.7 macrophages. PLoS One. 6 (8), e24066. doi: 10.1371/journal.pone.0024066
  36. Stillwell W. 2006. The role of polyunsaturated lipids in membrane raft function. Scand. J. Food Nutr. 50, 107–113. doi: 10.1080/17482970601066165
  37. Brown M.S., Goldstein J.L. 1986. A receptor-mediated pathway for cholesterol homeostasis. Science. 232, 34–47.
  38. Ikonen E., Zhou X. 2021. Cholesterol transport between cellular membranes: A balancing act between interconnected lipid fluxes. Dev. Cell. 56 (10), 1430–1436. doi: 10.1016/j.devcel.2021.04.025
  39. Ikonen E., 2018. Mechanisms of cellular cholesterol compartmentalization: Recent insights. Curr. Opin. Cell Biol. 53, 77–83. https://doi.org/10.1016/j.ceb.2018.06.002
  40. Steck T.L., Tabei S.M.A., Lange Y. 2021. A basic model for cell cholesterol homeostasis. Traffic. 22 (12), 471–481. doi: 10.1111/tra.12816
  41. Mesmin B., Maxfield F.R. 2009. Intracellular sterol dynamics. Biochim. Biophys. Acta. 1791 (7), 636–645. doi: 10.1016/j.bbalip.2009.03.002
  42. Albi E., Viola Magni M.P. 2004. The role of intranuclear lipids. Biol Cell. 96 (8), 657–667. doi: 10.1016/j.biolcel.2004.05.004
  43. Silva I.T.G., Fernandes V., Souza C., Treptow W., Santos G.M. 2017. Biophysical studies of cholesterol effects on chromatin[S]. J. Lipid Res. 58 (5), 934–940. https://doi.org/10.1194/jlr.M074997
  44. Rossi G., Magni M.V., Albi E. 2007. Sphingomyelin-cholesterol and double stranded RNA relationship in the intranuclear complex. Arch. Biochem. Biophys. 459 (1), 27–32. doi: 10.1016/j.abb.2006.11.020
  45. Cascianelli G., Villani M., Tosti M., Marini F., Bartoccini E., Magni M.V., Albi E. 2008. Lipid microdomains in cell nucleus. Mol. Biol. Cell. 19 (12), 5289–5295. doi: 10.1091/mbc.e08-05-0517
  46. Martelli A.M., Falà F., Faenza I., Billi A.M., Cappellini A., Manzoli L., Cocco L. 2004. Metabolism and signaling activities of nuclear lipids. Cell Mol. Life Sci. 61 (10), 1143–1156. doi: 10.1007/s00018-004-3414-7
  47. Brown M.S., Goldstein J.L. 1990. Atherosclerosis. Scavenging for receptors. Nature. 343 (6258), 508–509. doi: 10.1038/343508a0
  48. Smith J.R., Osborne T.F., Goldstein J.L., Brown M.S. 1990. Identification of nucleotides responsible for enhancer activity of sterol regulatory element in low density lipoprotein receptor gene. J. Biol. Chem. 265 (4), 2306–2610.
  49. Hua X., Yokoyama C., Wu J., Briggs M.R., Brown M.S., Goldstein J.L., Wang X. 1993. SREBP-2, a second basic-helix-loop-helix-leucine zipper protein that stimulates transcription by binding to a sterol regulatory element. Proc. Natl. Acad. Sci. USA. 90, 11603–11607.
  50. Shimomura I., Bashmakov Y., Shimano H., Horton J.D., Goldstein J.L., Brown M.S. 1997. Cholesterol feeding reduces nuclear forms of sterol regulatory element binding proteins in hamster liver. Proc. Natl. Acad. Sci. USA. 94 (23), 12354–12359. doi: 10.1073/pnas.94.23.12354
  51. Goldstein J.L., Brown M.S. 2009. The LDL receptor. Arterioscler. Thromb. Vasc. Biol. 29 (4), 431–438. doi: 10.1161/ATVBAHA.108.179564
  52. Briggs M.R., Yokoyama C., Wang X., Brown M.S., Goldstein J.L. 1993. Nuclear protein that binds sterol regulatory element of low-density lipoprotein receptor promoter. I. Identification of the low-density delineation of its target nucleotide sequence. J. Biol. Chem. 268 (19), 14490–14496.
  53. Vance J.E. 2022. Cellular itinerary of LDL cholesterol. Proc. Natl. Acad. Sci. USA. 119 (6), e2122584119. doi: 10.1073/pnas.2122584119
  54. Trinh M.N., Brown M.S., Goldstein J.L., Han J., Vale G., McDonald J.G., Seemann J., Mendell J.T., Lu F. 2020. Last step in the path of LDL cholesterol from lysosome to plasma membrane to ER is governed by phosphatidylserine. Proc. Natl. Acad. Sci. USA. 117 (31), 18521–18529. doi: 10.1073/pnas.2010682117
  55. Ercan B., Naito T., Koh D.H.Z., Dharmawan D., Saheki Y. 2021. Molecular basis of accessible plasma membrane cholesterol recognition by the GRAM domain of GRAMD1b. EMBO J. 40 (6), e106524. doi: 10.15252/embj.2020106524
  56. Sandhu J., Li S., Fairall L., Pfisterer S.G., Gurnett J.E., Xiao X., Weston T.A., Vashi D., Ferrari A., Orozco J.L., Hartman C.L., Strugatsky D., Lee S.D., He C., Hong C., Jiang H., Bentolila L.A., Gatta A.T., Levine T.P., Ferng A., Lee R., Ford D.A., Young S.G., Ikonen E., Schwabe J.W.R., Tontonoz P. 2018. Aster proteins facilitate nonvesicular plasma membrane to ER cholesterol transport in mammalian cells. Cell. 175 (2), 514–529, e20. doi: 10.1016/j.cell.2018.08.033
  57. Prin W.A., Toulmay A., Balla T. 2020. The functional universe of membrane contact sites. Nat. Rev. Mol. Cell Biol. 21 (1), 7–24. doi: 10.1038/s41580-019-0180-9
  58. Bohnert M. 2020. Tether me, tether me not---dynamic organelle contact sites in metabolic rewiring. Dev. Cell. 54 (2), 212–225. doi: 10.1016/j.devcel.2020.06.026
  59. Steck T.L., Lange Y. 2010. Cell cholesterol homeostasis: Mediation by active cholesterol. Trends Cell Biol. 20 (11), 680–687. https://doi.org/10.1016/j.tcb.2010.08.007
  60. Das A., Brown M.S., Anderson D.D., Goldstein J.L., Radhakrishnan A. 2014. Three pools of plasma membrane cholesterol and their relation to cholesterol homeostasis. Elife. 3, e02882. doi: 10.7554/eLife.02882
  61. Infante R.E., Radhakrishnan A. 2017. Continuous transport of a small fraction of plasma membrane cholesterol to endoplasmic reticulum regulates total cellular cholesterol. Elife. 6, e25466. doi: 10.7554/eLife.25466
  62. Endapally S., Frias D., Grzemska M., Gay A., Tomchick D.R., Radhakrishnan A. 2019. Molecular discrimination between two conformations of sphingomyelin in plasma membranes. Cell. 176 (5), 1040–1053.e17. doi: 10.1016/j.cell.2018.12.042
  63. Makino A., Abe M., Ishitsuka R., Murate M., Kishimoto T., Sakai S., Hullin-Matsuda F., Shimada Y., Inaba T., Miyatake H., Tanaka H., Kurahashi A., Pack C.G., Kasai R.S., Kubo S., Schieber N.L., Dohmae N., Tochio N., Hagiwara K., Sasaki Y., Aida Y., Fujimori F., Kigawa T., Nishibori K., Parton R.G., Kusumi A., Sako Y., Anderluh G., Yamashita M., Kobayashi T., Greimel P., Kobayashi T. 2017. A novel sphingomyelin/cholesterol domain-specific probe reveals the dynamics of the membrane domains during virus release and in Niemann–Pick type C. FASEB J. 31 (4), 1301–1322. doi: 10.1096/fj.201500075R
  64. Howe V., Sharpe L.J., Alexopoulos S.J., Kunze S.V., Chua N.K., Li D., Brown A.J. 2016. Cholesterol homeostasis: How do cells sense sterol excess? Chem. Phys. Lipids. 199, 170–178.
  65. Hille B., Dickson E.J., Kruse M., Vivas O., Suh B.-Ch. 2015. Phosphoinositides regulate ion channels. Biochim Biophys Acta – Mol. Cell Biol. Lipids. 1851 (6), 844–856. https://doi.org/10.1016/j.bbalip.2014
  66. Kelly R.A., O’Hara D.S., Mitch W.E., Smith T.W. 1986. Identification of NaK-ATPase inhibitors in human plasma as nonesterified fatty acids and lysophospholipids. J. Biol. Chem. 261 (25), 11704–11711.
  67. Erion D.M., Shulman G.I. 2010. Diacylglycerol mediated insulin resistance. Nat. Med. 16 (4), 400–402. doi: 10.1038/nm0410-400
  68. Claret M., Garay R., Giraud F. 1978. The effect of membrane cholesterol on the sodium pump in red blood cells. J. Physiol. 274, 247–263. doi: 10.1113/jphysiol.1978.sp012145
  69. Yoda S., Yoda A. 1987. Phosphorylated intermediates of Na,K-ATPase proteoliposomes controlled by bilayer cholesterol. Interaction with cardiac steroid. J. Biol. Chem. 262 (1), 103–109.
  70. Hossain K.R., Clarke R.J. 2019. General and specific interactions of the phospholipid bilayer with P-type ATPases. Biophys Rev. 11 (3), 353–364. doi: 10.1007/s12551-019-00533-2
  71. Garcia A., Lev B., Hossain K.R., Gorman A., Diaz D., Pham T.H.N., Cornelius F., Allen T.W., Clarke R.J. 2019. Cholesterol depletion inhibits Na+,K+-ATPase activity in a near-native membrane environment. J. Biol. Chem. 294 (15), 5956–5969. doi: 10.1074/jbc.RA118.006223
  72. Levitan I., Fang Y., Rosenhouse-Dantsker A., Romanenko V. 2010. Cholesterol and ion channels. Subcell. Biochem. 51, 509–549. doi: 10.1007/978-90-481-8622-8_19
  73. Thompson M.J., Baenziger J.E. 2020. Ion channels as lipid sensors: From structures to mechanisms. Nat. Chem. Biol. 16 (12), 1331–1342. doi: 10.1038/s41589-020-00693-3
  74. Bukiya A.N., Durdagi S., Noskov S., Rosenhouse-Dantsker A. 2017. Cholesterol up-regulates neuronal G protein-gated inwardly rectifying potassium (GIRK) channel activity in the hippocampus. J. Biol. Chem. 292 (15), 6135–6147. doi: 10.1074/jbc.M116.753350
  75. Poveda J.A., Giudici A.M., Renart M.L., Molina M.L., Montoya E., Fernández-Carvajal A., Fernández-Ballester G., Encinar J.A., González-Ros J.M. 2014. Lipid modulation of ion channels through specific binding sites. Biochim. Biophy.s Acta. 1838 (6), 1560–1567. doi: 10.1016/j.bbamem.2013.10.023
  76. Zwijsen RM., Oudenhoven I.M., de Haan L.H. 1992. Effects of cholesterol and oxysterols on gap junctional communication between human smooth muscle cells. Eur. J. Pharmacol. 28 (2–3), 115–120. doi: 10.1016/0926-6917(92)90020-d
  77. Verrecchia F., Sarrouilhe D., Hervé J.C. 2001. Nongenomic steroid action: Inhibiting effects on cell-to-cell communication between rat ventricular myocytes. Exp. Clin. Cardiol. 6 (3), 124–131.
  78. Dunina-Barkovskaya A.Y. 2005. Are gap junctions lipid–protein rafts? Biologicheskie Membrany (Rus.). 22 (1), 27–33.
  79. Cibelli A., Scemes E., Spray D.C. 2022. Activity and stability of Panx1 channels in astrocytes and neuroblastoma cells are enhanced by cholesterol depletion. Cells. 11, 3219. https://doi.org/10.3390/cells11203219
  80. Coddou C., Yan Z., Obsil T., Huidobro-Toro J.P., Stojilkovic S.S. 2011. Activation and regulation of purinergic P2X receptor channels. Pharmacol. Rev. 63 (3), 641–683. doi: 10.1124/pr.110.003129.5
  81. Murrell-Lagnado R.D. 2017. Regulation of P2X purinergic receptor signaling by cholesterol. Curr. Top. Membr. 80, 211–232. doi: 10.1016/bs.ctm.2017.05.004
  82. Bennett P.J., Simmonds M.A. 1996. The influence of membrane cholesterol on the GABAA receptor. Br. J. Pharmacol. 117 (1), 87–92. doi: 10.1111/j.1476-5381.1996.tb15158.x
  83. Hénin J., Salari R., Murlidaran S., Brannigan G. 2014. A predicted binding site for cholesterol on the GABAA receptor. Biophys. J. 106 (9), 1938–1949. doi: 10.1016/j.bpj.2014.03.024
  84. Cherezov V., Rosenbaum D.M., Hanson M.A., Rasmussen S.G., Thian F.S., Kobilka T.S., Choi H.J., Kuhn P., Weis W.I., Kobilka B.K., Stevens R.C. 2007. High resolution crystal structure of an engineered human beta2-adrenergic G protein-coupled receptor. Science. 318 (5854), 1258–1265. doi: 10.1126/science.1150577
  85. Kiriakidi S., Kolocouris A., Liapakis G., Ikram S., Durdagi S., Mavromoustakos T. 2019. Effects of cholesterol on GPCR function: Insights from computational and experimental studies. In: Direct mechanisms in cholesterol modulation of protein function, advances in experimental medicine and biology. Eds. Rosenhouse-Dantsker A., Bukiya A.N. Springer Nature Switzerland AG, p. 1135. https://doi.org/10.1007/978-3-030-14265-0_5
  86. Genheden G., Essex J.W., Lee A.G. 2017. G protein coupled receptor interactions with cholesterol deep in the membrane. Biochim. Biophys. Acta. 1859, 268–281.
  87. Saxena R., Chattopadhyay A. 2012. Membrane cholesterol stabilizes the human serotonin(1A) receptor. Biochim. Biophys. Acta. 1818 (12), 2936–2942. doi: 10.1016/j.bbamem.2012.07.032
  88. Sarkar P., Mozumder S., Bej A., Mukherjee S., Sengupta J., Chattopadhyay A. 2020. Structure, dynamics and lipid interactions of serotonin receptors: Excitements and challenges. Biophys. Rev. 13 (1), 101–122. doi: 10.1007/s12551-020-00772-8
  89. Santiago J., Guzmàn G.R., Rojas L.V., Marti R., Asmar-Rovira G.A., Santana L.F., McNamee M., Lasalde-Dominicci J.A. 2001. Probing the effects of membrane cholesterol in the Torpedo californica acetylcholine receptor and the novel lipid-exposed mutation alpha C418W in Xenopus oocytes. J. Biol. Chem. 276, 46523–46532. doi: 10.1074/jbc.M104563200
  90. Vallés A.S., Barrantes F.J. 2021. Dysregulation of neuronal nicotinic acetylcholine receptor cholesterol crosstalk in autism spectrum disorder. Front. Mol. Neurosci. 14, 744597. doi: 10.3389/fnmol.2021.744597
  91. Borroni V., Baier C.J., Lang T., Bonini I., White M.M., Garbus I., Barrantes F.J. 2007. Cholesterol depletion activates rapid internalization of submicronsized acetylcholine receptor domains at the cell membrane. Mol. Membr. Biol. 24 (1), 1–15. doi: 10.1080/09687860600903387
  92. Antonini A., Caioli S., Saba L., Vindigni G., Biocca S., Canu N., Zona C. 2018. Membrane cholesterol depletion in cortical neurons highlights altered NMDA receptor functionality in a mouse model of amyotrophic lateral sclerosis. Biochim. Biophys. Acta. Mol. Basis Dis. 1864 (2), 509–519. doi: 10.1016/j.bbadis.2017.11.008
  93. Yao L., Wells M., Wu X., Xu Y., Zhang L., Xiong W. 2020. Membrane cholesterol dependence of cannabinoid modulation of glycine receptor. FASEB J. 34 (8), 10920–10930. doi: 10.1096/fj.201903093R
  94. Kwiatkowska K., Frey J., Sobota A. 2003. Phosphorylation of FcγRIIA is required for the receptor-induced actin rearrangement and capping: The role of membrane rafts. J. Cell Sci. 116, 989–998.
  95. Febbraio M., Hajjar D.P., Silverstein R.L. 2001. CD36: A class B scavenger receptor involved in angiogenesis, atherosclerosis, inflammation, and lipid metabolism. J. Clin. Invest. 108, 785–791. doi: 10.1172/JCI200114006
  96. Han J., Hajjar D.P., Tauras J.M., Nicholson A.C. 1999. Cellular cholesterol regulates expression of the macrophage type B scavenger receptor, CD36. J. Lipid Res. 40, 830–838.
  97. McGilvray I.D., Serghides L., Kapus A., Rotstein O.D., Kain K.C. 2000. Nonopsonic monocyte/macrophage phagocytosis of Plasmodium falciparum-parasitized erythrocytes: A role for CD36 in malarial clearance. Blood. 96, 3231–3240.
  98. Grouleff J., Irudayam S.J., Skeby K.K., Schiøtt B. 2015. The influence of cholesterol on membrane protein structure, function, and dynamics studied by molecular dynamics simulations. Biochim. Biophys. Acta – Biomembranes. 1848 (9), 1783–1795. https://doi.org/10.1016/j.bbamem.2015.03.029
  99. Oh H., Mohler E.R. III, Tian A., Baumgart T., Diamond S.L. 2009. Membrane cholesterol is a biomechanical regulator of neutrophil adhesion. Arterioscler. Thromb. Vasc. Biol. 29, 1290–1297.
  100. Sitrin R.G., Sassanella T.M., Landers J.J., Petty H.R. 2010. Migrating human neutrophils exhibit dynamic spatiotemporal variation in membrane lipid organization. Amer. J. Respir. Cell Mol. Biol. 43, 498–506.
  101. Lajoie P., Nabi I.R. 2007. Regulation of raft dependent endocytosis. J. Cell Mol. Med. 11 (4), 644–653.
  102. Cho Y.Y., Kwon O.H., Chung S. 2020. Preferred endocytosis of amyloid precursor protein from cholesterol-enriched lipid raft microdomains. Molecules. 25 (23), 5490. doi: 10.3390/molecules25235490
  103. Thiele C., Hannah M.J., Fahrenholz F., Huttner W.B. 2000. Cholesterol binds to synaptophysin and is required for biogenesis of synaptic vesicles. Nat. Cell Biol. 2, 42–49. doi: 10.1038/71366
  104. Bryan A.M., Farnoud A.M., Mor V., Del Poeta M. 2014. Macrophage cholesterol depletion and its effect on the phagocytosis of Cryptococcus neoformans. J. Vis. Exp. 94, 52432. doi: 10.3791/52432
  105. Baranova I.N., Kurlander R., Bocharov A.V., Vishnyakova T.G., Chen Z., Remaley A.T., Csako G., Patterson A.P., Eggerman T.L. 2008. Role of human CD36 in bacterial recognition, phagocytosis, and pathogen-induced JNK-mediated signaling. J. Immunol. 181, 7147–7156.
  106. Дунина-Барковская А.Я., Вишнякова Х.С., Баратова Л.А., Радюхин В.А. 2019. Модуляция холестерин-зависимой активности макрофагов IC-21 пептидом, содержащим два CRAC-мотива из белка M1 вируса гриппа. Биол. мембраны. 36 (4), 271–280.
  107. Дунина-Барковская А.Я., Вишнякова Х.С. 2020. Модуляция холестерин-зависимой активности макрофагов IC-21 CRAC-содержащими пептидами с заменами мотивообразующих аминокислот. Биол. мембраны. 37 (5), 381–395.
  108. Maltan L., Andova A.M., Derler I. 2022. The role of lipids in CRAC channel function. Biomolecules. 12 (3), 352. doi: 10.3390/biom12030352
  109. Derler I., Jardin I., Stathopulos P.B., Muik M., Fahrner M., Zayats V., Pandey S.K., Poteser M., Lackner B., Absolonova M., Schindl R., Groschner K., Ettrich R., Ikura M., Romanin C. 2016. Cholesterol modulates Orai1 channel function. Sci. Signal. 9, ra10. doi: 10.1126/scisignal.aad7808
  110. Bohórquez-Hernández A., Gratton E., Pacheco J., Asanov A., Vaca L. 2017. Cholesterol modulates the cellular localization of Orai1 channels and its disposition among membrane domains. Biochim. Biophys. Acta. 1862, 1481–1490. doi: 10.1016/j.bbalip.2017.09.005
  111. Kovarova M., Wassif C., Odom S., Liao K., Porter F.D., Rivera J. 2006. Cholesterol deficiency in a mouse model of Smith–Lemli–Opitz syndrome reveals increased mast cell responsiveness. J. Exp. Med. 203, 1161–1171. doi: 10.1084/jem.20051701
  112. Pacheco J., Dominguez L., Hernandez A.B., Asanov A., Vaca L. 2016. A cholesterol-binding domain in STIM1 modulates STIM1-Orai1 physical and functional interactions. Sci. Rep. 6, 29634. doi: 10.1038/srep29634
  113. Li H., Papadopoulos V. 1998. Peripheral–type benzodiazepine receptor function in cholesterol transport. Identification of a putative cholesterol recognition/interaction amino acid sequence and consensus pattern. Endocinology. 139, 4991–4997. doi: 10.1016/s0039-128x(96)00154-7
  114. Jamin N., Neumann J.M., Ostuni M.A., Vu T.K., Yao Z.X., Murail S., Robert J.C., Giatzakis C., Papadopoulos V., Lacapère J.J. 2005. Characterization of the cholesterol recognition amino acid consensus sequence of the peripheral-type benzodiazepine receptor. Mol. Endocrinol. 19 (3), 588–594. doi: 10.1210/me.2004-0308
  115. Fantini J., Barrantes F.J. 2013. How cholesterol interacts with membrane proteins: An exploration of cholesterol-binding sites including CRAC, CARC, and tilted domains. Front. Physiol. 4, 31. doi: 10.3389/fphys.2013.00031
  116. Listowski M.A., Leluk J., Kraszewski S., Sikorski A.F. 2015. Cholesterol interaction with the MAGUK protein family member, MPP1, via CRAC and CRAC like motifs: An in silico docking analysis. PLoS One. 10 (7), e0133141. doi: 10.1371/journal.Pone.0133141
  117. Fantini J., Epand R.M., Barrantes F.J. 2019. Cholesterol recognition motifs in membrane proteins. In: Direct mechanisms in cholesterol modulation of protein function. Eds. Rosenhouse-Dantsker A., Bukiya A. Series Advances in Experimental Medicine and Biology. Cham: Springer. 1135, 3–25. doi: 10.1007/978-3-030-14265-0_1
  118. Rajagopalan L., Greeson J.N., Xia A., Liu H., Sturm A., Raphael R.M., Davidson A.L., Oghalai J.S., Pereira F.A., Brownell W.E. 2007. Tuning of the outer hair cell motor by membrane cholesterol. J. Biol. Chem. 282 (50), 36659–36670. doi: 10.1074/jbc.M705078200
  119. Purcell E.K., Liu L., Thomas P.V., Duncan R.K. 2011. Cholesterol influences voltage-gated calcium channels and BK-type potassium channels in auditory hair cells. PLoS One. 6 (10), e26289. doi: 10.1371/journal.pone.0026289
  120. Zidovetzki R., Levitan I. 2007. Use of cyclodextrins to manipulate plasma membrane cholesterol content: Evidence, misconceptions and control strategies. Biochim. Biophys. Acta. 1768, 1311–1324. doi: 10.1016/j.bbamem.2007.03.026
  121. Kurkov S.V., Loftsson T. 2013. Cyclodextrins. Int. J. Pharm. 453 (1), 167–180. doi: 10.1016/j.ijpharm.2012.06.055
  122. Singh A.K., McMillan J., Bukiya A.N., Burton B., Parrill A.L., Dopico A.M. 2012. Multiple cholesterol recognition/interaction amino acid consensus (CRAC) motifs in cytosolic C tail of Slo1 subunit determine cholesterol sensitivity of Ca2+- and voltage-gated K+ (BK) channels. J. Biol. Chem. 287 (24), 20509–20521. doi: 10.1074/jbc.M112.356261
  123. Albert A.D., Boesze-Battaglia K. 2005. The role of cholesterol in rod outer segment membranes. Prog. Lipid Res. 44 (2–3), 99–124. doi: 10.1016/j.plipres.2005.02.001
  124. Boesze-Battaglia K., Fliesler S.J., Albert A.D. 1990. Relationship of cholesterol content to spatial distribution and age of disc membranes in retinal rod outer segments. J. Biol. Chem. 265, 18867–18870.
  125. Andrews L.D., Cohen A.I. 1979. Freeze-fracture evidence for the presence of cholesterol in particle-free patches of basal disks and the plasma membrane of retinal rod outer segments of mice and frogs. J. Cell Biol. 81, 215–228.
  126. Niu S.L., Mitchell D.C., Litman B.J. 2002. Manipulation of cholesterol levels in rod disk membranes by methyl-beta-cyclodextrin: Effects on receptor activation. J. Biol. Chem. 277, 20139–20145. doi: 10.1074/jbc.M200594200
  127. Park P.S. 2021. Supramolecular organization of rhodopsin in rod photoreceptor cell membranes. Pflügers Arch. 473 (9), 1361–1376. doi: 10.1007/s00424-021-02522-5
  128. Albert A.D., Boesze-Battaglia K., Paw Z., Watts A., Epand R.M. 1996. Effect of cholesterol on rhodopsin stability in disk membranes. Biochim. Biophys. Acta. 1297 (1), 77–82. https://doi.org/10.1016/0167-4838(96)00102-1
  129. Островский М.А. ٢٠٢٤. Проект “Родопсин”. Биол. мембраны. 41 (3).
  130. Dunina-Barkovskaya A. 2023. Influenza virus and cholesterol: Touch points and potential consequences for the host cell. Med. Res. Arch. 11 (9). https://doi.org/10.18103/mra.v11i9.4399
  131. Dunina-Barkovskaya A. 2021. Cholesterol recognition motifs (CRAC) in the S protein of coronavirus: A possible target for antiviral therapy? In: Management of Dyslipidemia. Ed. Aronow W.S. IntechOpen. https://doi.org/10.5772/intechopen.95977
  132. Nayak D.P., Hui E.K.-W., Barman S. 2004. Assembly and budding of influenza virus. Virus. Res. 106, 147–165. doi: 10.1016/j.virusres.2004.08.012
  133. Chazal N., Gerlier D. 2003. Virus entry, assembly, budding, and membrane rafts. Microbiol. Mol. Biol. Rev. 67 (2), 226–237. doi 10.1128/ mmbr.67.2.226-237.2003
  134. Jones J.E., Le Sage V., Lakdawala S.S. 2020. Viral and host heterogeneity and their effects on the viral life cycle. Nat. Rev. Microbiol. 6, 1–11. doi: 10.1038/s41579-020-00449-9
  135. Navaratnarajah C.K., Warrier R., Kuhn R.J. 2008. Assembly of viruses: Enveloped particles. Encyclopedia of Virology, 193–200. doi: 10.1016/B978-012374410-4.00667-1
  136. Zhang J., Pekosz A., Lamb R.A. 2000. Influenza virus assembly and lipid raft microdomains: A role for the cytoplasmic tails of the spike glycoproteins. J. Virol. 74, 4634–4644. doi: 10.1128/jvi.74.10.4634-4644.2000
  137. Rawat S.S., Viard M., Gallo S.A., Rein A., Blumenthal R., Puri A. 2003. Modulation of entry of enveloped viruses by cholesterol and sphingolipids (Review). Mol. Membr. Biol. 20 (3), 243–254. doi: 10.1080/0968768031000104944
  138. Nayak D.P., Hui E.K. 2004. The role of lipid microdomains in virus biology. Subcell. Biochem. 37, 443–491. doi: 10.1007/978-1-4757-5806-1_14
  139. Frensing T., Kupke S.Y., Bachmann M., Fritzsche S., Gallo-Ramirez L.E., Reichl U. 2016. Influenza virus intracellular replication dynamics, release kinetics, and particle morphology during propagation in MDCK cells. Appl. Microbiol. Biotechnol. 100 (16), 7181–7192. doi: 10.1007/s00253-016-7542-4
  140. Radenkovic D., Chawla S., Pirro M., Sahebkar A., Banach M. 2020. Cholesterol in relation to COVID-19: Should we care about it? J. Clin. Med. 9, 1909. doi: 10.3390/jcm9061909
  141. Hu X., Chen D., Wu L., He G., Ye W. 2020. Declined serum high density lipoprotein cholesterol is associated with the severity of COVID-19 infection. Clin. Chim. Acta. 510, 105–110. doi: 10.1016/j.cca.2020.07.015
  142. Hanson J.M., Gettel D.L., Tabaei S.R., Jackman J., Kim M.C., Sasaki D.Y., Groves J.T., Liedberg B., Cho N.-J., Parikh A.N. 2016. Cholesterol-enriched domain formation induced by viral encoded, membrane-active amphipathic peptide. Biophys. J. 110, 176–187. doi: 10.1016/j.bpj.2015.11.032
  143. Cheng G., Montero A., Gastaminza P., Whitten-Bauer C., Wieland S.F., Isogawa M., Fredericksen B., Selvarajah S., Gallay P.A., Ghadiri M.R., Chisari F.V. 2008. A virocidal amphipathic α-helical peptide that inhibits hepatitis C virus infection in vitro. Proc. Natl. Acad. Sci. USA. 105, 3088–3093. doi: 10.1073/pnas.0712380105
  144. Hildebrandt E., Mcgee D.J. 2009. Helicobacter pylori lipopolysaccharide modification, Lewis antigen expression, and gastric colonization are cholesterol-dependent. BMC Microbiol. 9, 258. doi: 10.1186/1471-2180-9-258
  145. Morey P., Pfannkuch L., Pang E., Boccellato F., Sigal M., Imai-Matsushima A., Dyer V., Koch M., Mollenkopf H.J., Schlaermann P., Meyer T.F. 2018. Helicobacter pylori depletes cholesterol in gastric glands to prevent interferon gamma signaling and escape the inflammatory response. Gastroenterology. 154, 1391–1404. doi: 10.1053/j.gastro.2017.12.008
  146. Baj J., Forma A., Sitarz M., Portincasa P., Garruti G., Krasowska D., Maciejewski R. 2020. Helicobacter pylori virulence factors mechanisms of bacterial pathogenicity in the gastric microenvironment. Cells. 10 (1), 27. doi: 10.3390/cells10010027
  147. Rella A., Farnoud A.M., Del Poeta M. 2016. Plasma membrane lipids and their role in fungal virulence. Prog Lipid Res. 61, 63–72. doi: 10.1016/j.plipres.2015.11.003
  148. Joffrion T.M., Cushion M.T. 2010. Sterol biosynthesis and sterol uptake in the fungal pathogen Pneumocystis carinii. FEMS Microbiol Lett. 311 (1), 1–9. doi: 10.1111/j.1574-6968.2010.02007.x
  149. Griffin J.E., Pandey A.K., Gilmore S.A., Mizrahi V., McKinney J.D., Bertozzi C.R., Sassetti C.M. 2012. Cholesterol catabolism by Mycobacterium tuberculosis requires transcriptional and metabolic adaptations. Chem. Biol. 19 (2), 218–227. doi: 10.1016/j.chembiol.2011.12.016
  150. Bonds A.C., Sampson N.S. 2018. More than cholesterol catabolism: Regulatory vulnerabilities in Mycobacterium tuberculosis. Curr. Opin. Chem. Biol. 44, 39–46. doi: 10.1016/j.cbpa.2018.05.012
  151. Ouellet H., Johnston J.B., de Montellano P.R. 2011. Cholesterol catabolism as a therapeutic target in Mycobacterium tuberculosis. Trends Microbiol. 19 (11), 530–539. doi: 10.1016/j.tim.2011.07.009
  152. Maguire P.A., Sherman I.W. 1990. Phospholipid composition, cholesterol content and cholesterol exchange in Plasmodium falciparum-infected red cells. Mol. Biochem. Parasitol. 38, 105–112. doi: 10.1016/0166-6851(90)90210-d
  153. Ahiya A.I., Bhatnagar S., Morrisey J.M., Beck J.R., Vaidya A.B. 2022. Dramatic consequences of reducing erythrocyte membrane cholesterol on Plasmodium falciparum. Microbiol Spectr. 10 (1), e0015822. doi: 10.1128/spectrum.00158-22
  154. Maier A.G., van Ooij C. 2022. The role of cholesterol in invasion and growth of malaria parasites. Front. Cell. Infect. Microbiol. 12, 984049. doi: 10.3389/fcimb.2022.984049
  155. Samuel B.U., Mohandas N., Harrison T., McManus H., Rosse W., Reid M., Haldar K. 2001. The role of cholesterol and glycosylphosphatidylinositol-anchored proteins of erythrocyte rafts in regulating raft protein content and malarial infection. J. Biol. Chem. 276, 29319–29329. https://doi.org/10.1074/jbc.M101268200
  156. Glinsky G.V. 2020. Tripartite combination of candidate pandemic mitigation agents: Vitamin D, quercetin, and estradiol manifest properties of medicinal agents for targeted mitigation of the COVID-19 pandemic defined by genomics guided tracing of SARS-CoV-2 targets in human cells. Biomedicines. 8 (5), 129. doi: 10.3390/biomedicines8050129
  157. Cinatl J., Morgenstern B., Bauer G., Chandra P., Rabenau H., Doerr H.W. 2003. Glycyrrhizin, an active component of liquorice roots, and replication of SARS-associated coronavirus. Lancet. 361, 2045–2046. doi: 10.1016/s0140-6736(03)13615-x
  158. Gao Y., Ye S., Tang Y., Tong W., Sun S. 2023. Brain cholesterol homeostasis and its association with neurodegenerative diseases. Neurochem Int. 171, 105635. doi: 10.1016/j.neuint.2023.105635
  159. Auld D.S., Kornecook T.J., Bastianetto S., Quirion R. 2002. Alzheimer’s disease and the basal forebrain cholinergic system: Relations to beta amyloid peptides, cognition, and treatment strategies. Prog. Neurobiol. 68, 209–245.
  160. Schliebs R., Arendt T. 2006. The significance of the cholinergic system in the brain during aging and in Alzheimer’s disease. J. Neural. Transm. (Vienna Austria). 113, 1625–1644. doi: 10.1007/s00702-006-0579-2
  161. Valencia A., Reeves P.B., Sapp E., Li X., Alexander J., Kegel K.B., Chase K., Aronin N., DiFiglia M. 2010. Mutant huntingtin and glycogen synthase kinase 3-beta accumulate in neuronal lipid rafts of a presymptomatic knock-in mouse model of Huntington’s disease. J. Neurosci. Res. 88, 179–190.
  162. Jin U., Park S.J., Park S.M. 2019. Cholesterol metabolism in the brain and its association with Parkinson’s disease. Exp. Neurobiol. 28 (5), 554–567. doi: 10.5607/en.2019.28.5.554
  163. Hartmann H., Ho W.Y., Chang J.C., Ling S.C. 2022. Cholesterol dyshomeostasis in amyotrophic lateral sclerosis: Cause, consequence, or epiphenomenon? FEBS J. 289 (24), 7688–7709. doi: 10.1111/febs.16175
  164. Fukui K., Ferris H.A., Kahn C.R. 2015. Effect of cholesterol reduction on receptor signaling in neurons. J. Biol. Chem. 290 (44), 26383–26392. doi: 10.1074/jbc.M115.664367
  165. Andronie-Cioară F.L., Jurcău A., Jurcău M.C., Nistor-Cseppentö D.C., Simion A. 2022. Cholesterol management in neurology: Time for revised strategies? J. Pers. Med. 12, 1981. https://doi.org/10.3390/jpm12121981
  166. Shobab L.A., Hsiung G.Y.R., Feldman H.H. 2005. Cholesterol in Alzheimer’s disease. Lancet Neurol. 4 (12), 841–852. https://doi.org/10.1016/S1474-4422(05)70248-9
  167. Ji S.R., Wu Y., Sui S.F. 2002. Cholesterol is an important factor affecting the membrane insertion of beta-amyloid peptide (Aβ1–40), which may potentially inhibit the fibril formation. J. Biol. Chem. 277 (8), 6273–6279. doi: 10.1074/jbc.M104146200
  168. Vallés A.S., Barrantes F.J. 2021. Dysregulation of neuronal nicotinic acetylcholine receptor cholesterol crosstalk in autism spectrum disorder. Front. Mol. Neurosci. 14, 744597. doi: 10.3389/fnmol.2021.744597
  169. Borroni V., Baier C.J., Lang T., Bonini I., White M.M., Garbus I., Barrantes F.J. 2007. Cholesterol depletion activates rapid internalization of submicronsized acetylcholine receptor domains at the cell membrane. Mol. Membr. Biol. 24 (1), 1–15. doi: 10.1080/09687860600903387
  170. Valencia A., Reeves P.B., Sapp E., Li X., Alexander J., Kegel K.B., Chase K., Aronin N., DiFiglia M. 2010. Mutant huntingtin and glycogen synthase kinase 3-beta accumulate in neuronal lipid rafts of a presymptomatic knock-in mouse model of Huntington’s disease. J. Neurosci. Res. 88, 179–190.
  171. Vanier M.T. 2010. Niemann–Pick disease type C. Orphanet J. Rare Dis. 5, 16. doi: 10.1186/1750-1172-5-16
  172. Matsuo M., Togawa M., Hirabaru K., Mochinaga S., Narita A., Adachi M., Egashira M., Irie T., Ohno K. 2013. Effects of cyclodextrin in two patients with Niemann–Pick Type C disease. Mol. Genet. Metab. 108 (1), 76–81. doi: 10.1016/j.ymgme.2012.11.005

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Cholesterol molecule (a) (PubChem CID5997) and its putative location in the monolayer of membrane phospholipids (b) and in the bilayer lipid membrane, which is the basis of the cell membrane (c). In the simplified diagram of the membrane (c), the lipid bilayer contains glycerophospholipids with unsaturated and saturated fatty acid residues (uSFL and NFL, respectively), sphingolipids, and cholesterol. The bilayer contains membrane-associated cytoplasmic (CB) and extracellular (EC) proteins, as well as transmembrane proteins (TMP). The bilayer contains lipid rafts (LR) – microdomains enriched in sphingomyelin and cholesterol.

Baixar (807KB)

Declaração de direitos autorais © The Russian Academy of Sciences, 2024