Cell membrane cholesterol and regulation of cellular processes: new and the same old thing
- Autores: Dunina-Barkovskaya A.Y.1
-
Afiliações:
- Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences
- Edição: Volume 41, Nº 5-6 (2024)
- Páginas: 454-472
- Seção: ОБЗОРЫ
- URL: https://gynecology.orscience.ru/0233-4755/article/view/667425
- DOI: https://doi.org/10.31857/S0233475524050082
- EDN: https://elibrary.ru/cbiqob
- ID: 667425
Citar
Resumo
Membranes of living cells, or biological membranes, are unique molecular systems in which the functioning of all molecules is interdependent and coordinated, and disruption of this coordination can be fatal for the cell. One example of such coordination and mutual regulation is the functioning of membrane proteins, whose activity depends on their interaction with membrane lipids. This review summarizes the facts about the importance of the cholesterol component of cell membranes for the normal functioning of membrane proteins and the whole cell. This lipid component provides fine regulation of a variety of cellular functions and provides clues to understanding changes in the activity of a number of proteins under various physiologic and pathologic conditions. This review provides examples of cholesterol-dependent membrane proteins and cellular processes and discusses their role in several pathologies. Understanding the mechanisms of cholesterol-protein interactions represents a significant resource for the development of drugs that affect the cholesterol-protein interface.
Texto integral

Sobre autores
A. Dunina-Barkovskaya
Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences
Autor responsável pela correspondência
Email: dunina.aya@gmail.com
Rússia, Moscow, 117997
Bibliografia
- Maxfield F.R., van Meer G. 2010. Cholesterol, the central lipid of mammalian cells. Curr. Opin. Cell Biol. 22 (4), 422–429. doi: 10.1016/j.ceb.2010.05.004
- Song Y., Kenworthy A.K., Sanders C.R. 2014. Cholesterol as a co-solvent and a ligand for membrane proteins. Protein Science. 23, 1–22. doi: 10.1002/pro.2385
- Simons K., Ikonen E. 1997. Functional rafts in cell membranes. Nature. 387, 569–572.
- Ali O., Szabó A. 2023. Review of eukaryote cellular membrane lipid composition, with special attention to the fatty acids. Int. J. Mol. Sci. 24 (21), 15693. doi: 10.3390/ijms242115693
- van Meer G., Voelker D.R., Feigenson G.W. 2008. Membrane lipids: Where they are and how they behave. Nat. Rev. Mol. Cell Biol. 9, 112−124.
- Huang Z., London E. 2016. Cholesterol lipids and cholesterol-containing lipid rafts in bacteria. Chem. Phys. Lipids. 199, 11–16.
- Guzmán-Flores J.E., Steinemann-Hernández L., González de la Vara L.E., Gavilanes-Ruiz M., Romeo T., Alvarez A.F., Georgellis D. 2019. Proteomic analysis of Escherichia coli detergent-resistant membranes (DRM). PLoS One, 14, e0223794.
- Rohmer M., Bouvier-Nave P., Ourisson G. 1984. Distribution of hopanoid triterpenes in prokaryotes. Microbiology. 130, 1137–1150.
- Sáenz J.P., Grosser D., Bradley A.S., Lagny T.J., Lavrynenko O., Broda M., Simons K. 2015. Hopanoids as functional analogues of cholesterol in bacterial membranes. Proc. Natl. Acad. Sci. USA. 112, 11971–11976.
- Bi Y., Guo P., Liu L., Chen L., Zhang W. 2023. Elucidation of sterol biosynthesis pathway and its co-regulation with fatty acid biosynthesis in the oleaginous marine protist Schizochytrium sp. Front. Bioeng. Biotechnol. 11, 1188461. doi: 10.3389/fbioe.2023.1188461
- Planas-Riverola A., Gupta A., Betegón-Putze I., Bosch N., Ibañes M., Caño-Delgado A.I. 2019. Brassinosteroid signaling in plant development and adaptation to stress. Development. 146 (5), dev151894. doi: 10.1242/dev.151894
- Manghwar H., Hussain A., Ali Q., Liu F. 2022. Brassinosteroids (BRs) role in plant development and coping with different stresses. Int. J. Mol. Sci. 23 (3), 1012. doi: 10.3390/ijms23031012
- Myers J.L., Porter M., Narwold N., Bhat K., Dauwalder B., Roman G. 2021. Mutants of the white ABCG transporter in Drosophila melanogaster have deficient olfactory learning and cholesterol homeostasis. Int. J. Mol. Sci. 22 (23), 12967. doi: 10.3390/ijms222312967
- Dunina-Barkovskaya A. 2022. Cholesterol-dependent cellular processes and peptides containing cholesterol-binding motifs: Possible implications for medicine. Med. Res. Arch. 11 (1). https://doi.org/10.18103/mra.v11i1.3532
- Weber L.W., Boll M., Stampfl A. 2004. Maintaining cholesterol homeostasis: Sterol regulatory element-binding proteins. World J. Gastroenterol. 10 (21), 3081–3087. doi: 10.3748/wjg.v10.i21.3081
- Martín M.G., Pfrieger F., Dotti C.G. 2014. Cholesterol in brain disease: Sometimes determinant and frequently implicated. EMBO Rep. 15 (10), 1036–1053. doi: 10.15252/embr.201439225
- Martín-Segura A., Ahmed T., Casadomé-Perales Á., Palomares-Perez I., Palomer E., Kerstens A., Munck S., Balschun D., Dotti C.G. 2019. Age-associated cholesterol reduction triggers brain insulin resistance by facilitating ligand-independent receptor activation and pathway desensitization. Aging Cell. 18 (3), e12932. doi: 10.1111/acel.12932
- Corradi V., Mendez-Villuendas E., Ingólfsson H.I., Gu R.-X., Siuda I., Melo M.N., Moussatova A., DeGagné L.J., Sejdiu B.I., Singh G., Wassenaar T.A., Delgado Magnero K., Marrink S.J., Tieleman D.P. 2018. Lipid−protein interactions are unique fingerprints for membrane proteins. ACS Cent. Sci. 4 (6), 709−717. doi: 10.1021/acscentsci.8b00143
- Grouleff J., Irudayam S.J., Skeby K.K., Schiøtt B. 2015. The influence of cholesterol on membrane protein structure, function, and dynamics studied by molecular dynamics simulations. Biochim. Biophys. Acta – Biomembranes. 1848 (9), 1783−1795. https://doi.org/10.1016/j.bbamem.2015.03.029
- Mukherjee S., Zha X., Tabas I., Maxfield F.R. 1998. Cholesterol distribution in living cells: Fluorescence imaging using dehydroergosterol as a fluorescent cholesterol analog. Biophys J. 75, 1915−1925. doi: 10.1016/S0006-3495(98)77632-5
- Nyholm T.K. 2015. Lipid-protein interplay and lateral organization in biomembranes. Chem. Phys. Lipids. 189, 48−55.
- Nyholm T.K., Ozdirekcan S., Killian J.A. 2007. How protein transmembrane segments sense the lipid environment. Biochemistry. 46, 1457–1465.
- Coskun U., Simons K. 2011. Cell membranes: The lipid perspective. Structure. 19 (11), 1543–1548. doi: 10.1016/j.str.2011.10.010
- Sezgin E., Levental I., Mayor S., Eggeling C. 2017. The mystery of membrane organization: Composition, regulation, and roles of lipid rafts. Nat. Rev. Mol. Cell. Biol. 18, 361–374.
- Steck T.L., Ali Tabei S.M., Lange Y. 2024. Estimating the cholesterol affinity of integral membrane proteins from experimental data. Biochemistry, 63 (1), 19–26. https://doi.org/10.1021/acs.biochem.3c00567.
- Steck T.L., Lange Y. 2018. Transverse distribution of plasma membrane bilayer cholesterol: Picking sides. Traffic. 19 (10), 750–760. doi: 10.1111/tra.12586
- Maekawa M., Fairn G.D. 2015. Complementary probes reveal that phosphatidylserine is required for the proper transbilayer distribution of cholesterol. J. Cell Sci. 128 (7), 1422–1433.
- Ridsdale A., Denis M., Gougeon P.Y., Ngsee J.K., Presley J.F., Zha X. 2006. Cholesterol is required for efficient endoplasmic reticulum-to-Golgi transport of secretory membrane proteins. Mol. Biol. Cell. 17 (4), 1593–1605. doi: 10.1091/mbc.e05-02-0100
- Muller M.P., Jiang T., Sun C., Lihan M., Pant S., Mahinthichaichan P., Trifan A., Tajkhorshid E. 2019. Characterization of lipid-protein interactions and lipid-mediated modulation of membrane protein function through molecular simulation. Chem. Rev. 19, 6086–6161. https://doi.org/10.1021/acs.chemrev.8b00608
- Enkavi G., Javanainen M., Kulig W., Róg T., Vattulainen I. 2019. Multiscale simulations of biological membranes: The challenge to understand biological phenomena in a living substance. Chem Rev. 119, 5607–5774. doi: 10.1021/acs.chemrev.8b00538refs
- Bogdanov M., Dowhan W. 2021. Functional roles of lipids in biological membranes. In: Biochemistry of Lipids, Lipoproteins and Membranes. Eds. Ridgway N.D., McLeod R.S. 7th Edition. Elsevier, p. 1–51. https://doi.org/10.1016/B978-0-12-824048-9.00020-1
- Pike L.J. 2003. Lipid rafts: Bringing order to chaos. J. Lipid Res. 44 (4), 655–667. doi: 10.1194/jlr.R200021-JLR200
- Helms J.B., Zurzolo C. 2004. Lipids as targeting signals: Lipid rafts and intracellular trafficking. Traffic. 5 (4), 247–254. doi: 10.1111/j.1600-0854.2004.0181.x
- Pralle A., Keller P., Florin E.L., Simons K., Hörber J.K. 2000. Sphingolipid-cholesterol rafts diffuse as small entities in the plasma membrane of mammalian cells. J. Cell Biol. 148 (5), 997–1008. doi: 10.1083/jcb.148.5.997
- Schumann J., Leichtle A., Thiery J., Fuhrmann H. 2011. Fatty acid and peptide profiles in plasma membrane and membrane rafts of PUFA supplemented RAW264.7 macrophages. PLoS One. 6 (8), e24066. doi: 10.1371/journal.pone.0024066
- Stillwell W. 2006. The role of polyunsaturated lipids in membrane raft function. Scand. J. Food Nutr. 50, 107–113. doi: 10.1080/17482970601066165
- Brown M.S., Goldstein J.L. 1986. A receptor-mediated pathway for cholesterol homeostasis. Science. 232, 34–47.
- Ikonen E., Zhou X. 2021. Cholesterol transport between cellular membranes: A balancing act between interconnected lipid fluxes. Dev. Cell. 56 (10), 1430–1436. doi: 10.1016/j.devcel.2021.04.025
- Ikonen E., 2018. Mechanisms of cellular cholesterol compartmentalization: Recent insights. Curr. Opin. Cell Biol. 53, 77–83. https://doi.org/10.1016/j.ceb.2018.06.002
- Steck T.L., Tabei S.M.A., Lange Y. 2021. A basic model for cell cholesterol homeostasis. Traffic. 22 (12), 471–481. doi: 10.1111/tra.12816
- Mesmin B., Maxfield F.R. 2009. Intracellular sterol dynamics. Biochim. Biophys. Acta. 1791 (7), 636–645. doi: 10.1016/j.bbalip.2009.03.002
- Albi E., Viola Magni M.P. 2004. The role of intranuclear lipids. Biol Cell. 96 (8), 657–667. doi: 10.1016/j.biolcel.2004.05.004
- Silva I.T.G., Fernandes V., Souza C., Treptow W., Santos G.M. 2017. Biophysical studies of cholesterol effects on chromatin[S]. J. Lipid Res. 58 (5), 934–940. https://doi.org/10.1194/jlr.M074997
- Rossi G., Magni M.V., Albi E. 2007. Sphingomyelin-cholesterol and double stranded RNA relationship in the intranuclear complex. Arch. Biochem. Biophys. 459 (1), 27–32. doi: 10.1016/j.abb.2006.11.020
- Cascianelli G., Villani M., Tosti M., Marini F., Bartoccini E., Magni M.V., Albi E. 2008. Lipid microdomains in cell nucleus. Mol. Biol. Cell. 19 (12), 5289–5295. doi: 10.1091/mbc.e08-05-0517
- Martelli A.M., Falà F., Faenza I., Billi A.M., Cappellini A., Manzoli L., Cocco L. 2004. Metabolism and signaling activities of nuclear lipids. Cell Mol. Life Sci. 61 (10), 1143–1156. doi: 10.1007/s00018-004-3414-7
- Brown M.S., Goldstein J.L. 1990. Atherosclerosis. Scavenging for receptors. Nature. 343 (6258), 508–509. doi: 10.1038/343508a0
- Smith J.R., Osborne T.F., Goldstein J.L., Brown M.S. 1990. Identification of nucleotides responsible for enhancer activity of sterol regulatory element in low density lipoprotein receptor gene. J. Biol. Chem. 265 (4), 2306–2610.
- Hua X., Yokoyama C., Wu J., Briggs M.R., Brown M.S., Goldstein J.L., Wang X. 1993. SREBP-2, a second basic-helix-loop-helix-leucine zipper protein that stimulates transcription by binding to a sterol regulatory element. Proc. Natl. Acad. Sci. USA. 90, 11603–11607.
- Shimomura I., Bashmakov Y., Shimano H., Horton J.D., Goldstein J.L., Brown M.S. 1997. Cholesterol feeding reduces nuclear forms of sterol regulatory element binding proteins in hamster liver. Proc. Natl. Acad. Sci. USA. 94 (23), 12354–12359. doi: 10.1073/pnas.94.23.12354
- Goldstein J.L., Brown M.S. 2009. The LDL receptor. Arterioscler. Thromb. Vasc. Biol. 29 (4), 431–438. doi: 10.1161/ATVBAHA.108.179564
- Briggs M.R., Yokoyama C., Wang X., Brown M.S., Goldstein J.L. 1993. Nuclear protein that binds sterol regulatory element of low-density lipoprotein receptor promoter. I. Identification of the low-density delineation of its target nucleotide sequence. J. Biol. Chem. 268 (19), 14490–14496.
- Vance J.E. 2022. Cellular itinerary of LDL cholesterol. Proc. Natl. Acad. Sci. USA. 119 (6), e2122584119. doi: 10.1073/pnas.2122584119
- Trinh M.N., Brown M.S., Goldstein J.L., Han J., Vale G., McDonald J.G., Seemann J., Mendell J.T., Lu F. 2020. Last step in the path of LDL cholesterol from lysosome to plasma membrane to ER is governed by phosphatidylserine. Proc. Natl. Acad. Sci. USA. 117 (31), 18521–18529. doi: 10.1073/pnas.2010682117
- Ercan B., Naito T., Koh D.H.Z., Dharmawan D., Saheki Y. 2021. Molecular basis of accessible plasma membrane cholesterol recognition by the GRAM domain of GRAMD1b. EMBO J. 40 (6), e106524. doi: 10.15252/embj.2020106524
- Sandhu J., Li S., Fairall L., Pfisterer S.G., Gurnett J.E., Xiao X., Weston T.A., Vashi D., Ferrari A., Orozco J.L., Hartman C.L., Strugatsky D., Lee S.D., He C., Hong C., Jiang H., Bentolila L.A., Gatta A.T., Levine T.P., Ferng A., Lee R., Ford D.A., Young S.G., Ikonen E., Schwabe J.W.R., Tontonoz P. 2018. Aster proteins facilitate nonvesicular plasma membrane to ER cholesterol transport in mammalian cells. Cell. 175 (2), 514–529, e20. doi: 10.1016/j.cell.2018.08.033
- Prin W.A., Toulmay A., Balla T. 2020. The functional universe of membrane contact sites. Nat. Rev. Mol. Cell Biol. 21 (1), 7–24. doi: 10.1038/s41580-019-0180-9
- Bohnert M. 2020. Tether me, tether me not---dynamic organelle contact sites in metabolic rewiring. Dev. Cell. 54 (2), 212–225. doi: 10.1016/j.devcel.2020.06.026
- Steck T.L., Lange Y. 2010. Cell cholesterol homeostasis: Mediation by active cholesterol. Trends Cell Biol. 20 (11), 680–687. https://doi.org/10.1016/j.tcb.2010.08.007
- Das A., Brown M.S., Anderson D.D., Goldstein J.L., Radhakrishnan A. 2014. Three pools of plasma membrane cholesterol and their relation to cholesterol homeostasis. Elife. 3, e02882. doi: 10.7554/eLife.02882
- Infante R.E., Radhakrishnan A. 2017. Continuous transport of a small fraction of plasma membrane cholesterol to endoplasmic reticulum regulates total cellular cholesterol. Elife. 6, e25466. doi: 10.7554/eLife.25466
- Endapally S., Frias D., Grzemska M., Gay A., Tomchick D.R., Radhakrishnan A. 2019. Molecular discrimination between two conformations of sphingomyelin in plasma membranes. Cell. 176 (5), 1040–1053.e17. doi: 10.1016/j.cell.2018.12.042
- Makino A., Abe M., Ishitsuka R., Murate M., Kishimoto T., Sakai S., Hullin-Matsuda F., Shimada Y., Inaba T., Miyatake H., Tanaka H., Kurahashi A., Pack C.G., Kasai R.S., Kubo S., Schieber N.L., Dohmae N., Tochio N., Hagiwara K., Sasaki Y., Aida Y., Fujimori F., Kigawa T., Nishibori K., Parton R.G., Kusumi A., Sako Y., Anderluh G., Yamashita M., Kobayashi T., Greimel P., Kobayashi T. 2017. A novel sphingomyelin/cholesterol domain-specific probe reveals the dynamics of the membrane domains during virus release and in Niemann–Pick type C. FASEB J. 31 (4), 1301–1322. doi: 10.1096/fj.201500075R
- Howe V., Sharpe L.J., Alexopoulos S.J., Kunze S.V., Chua N.K., Li D., Brown A.J. 2016. Cholesterol homeostasis: How do cells sense sterol excess? Chem. Phys. Lipids. 199, 170–178.
- Hille B., Dickson E.J., Kruse M., Vivas O., Suh B.-Ch. 2015. Phosphoinositides regulate ion channels. Biochim Biophys Acta – Mol. Cell Biol. Lipids. 1851 (6), 844–856. https://doi.org/10.1016/j.bbalip.2014
- Kelly R.A., O’Hara D.S., Mitch W.E., Smith T.W. 1986. Identification of NaK-ATPase inhibitors in human plasma as nonesterified fatty acids and lysophospholipids. J. Biol. Chem. 261 (25), 11704–11711.
- Erion D.M., Shulman G.I. 2010. Diacylglycerol mediated insulin resistance. Nat. Med. 16 (4), 400–402. doi: 10.1038/nm0410-400
- Claret M., Garay R., Giraud F. 1978. The effect of membrane cholesterol on the sodium pump in red blood cells. J. Physiol. 274, 247–263. doi: 10.1113/jphysiol.1978.sp012145
- Yoda S., Yoda A. 1987. Phosphorylated intermediates of Na,K-ATPase proteoliposomes controlled by bilayer cholesterol. Interaction with cardiac steroid. J. Biol. Chem. 262 (1), 103–109.
- Hossain K.R., Clarke R.J. 2019. General and specific interactions of the phospholipid bilayer with P-type ATPases. Biophys Rev. 11 (3), 353–364. doi: 10.1007/s12551-019-00533-2
- Garcia A., Lev B., Hossain K.R., Gorman A., Diaz D., Pham T.H.N., Cornelius F., Allen T.W., Clarke R.J. 2019. Cholesterol depletion inhibits Na+,K+-ATPase activity in a near-native membrane environment. J. Biol. Chem. 294 (15), 5956–5969. doi: 10.1074/jbc.RA118.006223
- Levitan I., Fang Y., Rosenhouse-Dantsker A., Romanenko V. 2010. Cholesterol and ion channels. Subcell. Biochem. 51, 509–549. doi: 10.1007/978-90-481-8622-8_19
- Thompson M.J., Baenziger J.E. 2020. Ion channels as lipid sensors: From structures to mechanisms. Nat. Chem. Biol. 16 (12), 1331–1342. doi: 10.1038/s41589-020-00693-3
- Bukiya A.N., Durdagi S., Noskov S., Rosenhouse-Dantsker A. 2017. Cholesterol up-regulates neuronal G protein-gated inwardly rectifying potassium (GIRK) channel activity in the hippocampus. J. Biol. Chem. 292 (15), 6135–6147. doi: 10.1074/jbc.M116.753350
- Poveda J.A., Giudici A.M., Renart M.L., Molina M.L., Montoya E., Fernández-Carvajal A., Fernández-Ballester G., Encinar J.A., González-Ros J.M. 2014. Lipid modulation of ion channels through specific binding sites. Biochim. Biophy.s Acta. 1838 (6), 1560–1567. doi: 10.1016/j.bbamem.2013.10.023
- Zwijsen RM., Oudenhoven I.M., de Haan L.H. 1992. Effects of cholesterol and oxysterols on gap junctional communication between human smooth muscle cells. Eur. J. Pharmacol. 28 (2–3), 115–120. doi: 10.1016/0926-6917(92)90020-d
- Verrecchia F., Sarrouilhe D., Hervé J.C. 2001. Nongenomic steroid action: Inhibiting effects on cell-to-cell communication between rat ventricular myocytes. Exp. Clin. Cardiol. 6 (3), 124–131.
- Dunina-Barkovskaya A.Y. 2005. Are gap junctions lipid–protein rafts? Biologicheskie Membrany (Rus.). 22 (1), 27–33.
- Cibelli A., Scemes E., Spray D.C. 2022. Activity and stability of Panx1 channels in astrocytes and neuroblastoma cells are enhanced by cholesterol depletion. Cells. 11, 3219. https://doi.org/10.3390/cells11203219
- Coddou C., Yan Z., Obsil T., Huidobro-Toro J.P., Stojilkovic S.S. 2011. Activation and regulation of purinergic P2X receptor channels. Pharmacol. Rev. 63 (3), 641–683. doi: 10.1124/pr.110.003129.5
- Murrell-Lagnado R.D. 2017. Regulation of P2X purinergic receptor signaling by cholesterol. Curr. Top. Membr. 80, 211–232. doi: 10.1016/bs.ctm.2017.05.004
- Bennett P.J., Simmonds M.A. 1996. The influence of membrane cholesterol on the GABAA receptor. Br. J. Pharmacol. 117 (1), 87–92. doi: 10.1111/j.1476-5381.1996.tb15158.x
- Hénin J., Salari R., Murlidaran S., Brannigan G. 2014. A predicted binding site for cholesterol on the GABAA receptor. Biophys. J. 106 (9), 1938–1949. doi: 10.1016/j.bpj.2014.03.024
- Cherezov V., Rosenbaum D.M., Hanson M.A., Rasmussen S.G., Thian F.S., Kobilka T.S., Choi H.J., Kuhn P., Weis W.I., Kobilka B.K., Stevens R.C. 2007. High resolution crystal structure of an engineered human beta2-adrenergic G protein-coupled receptor. Science. 318 (5854), 1258–1265. doi: 10.1126/science.1150577
- Kiriakidi S., Kolocouris A., Liapakis G., Ikram S., Durdagi S., Mavromoustakos T. 2019. Effects of cholesterol on GPCR function: Insights from computational and experimental studies. In: Direct mechanisms in cholesterol modulation of protein function, advances in experimental medicine and biology. Eds. Rosenhouse-Dantsker A., Bukiya A.N. Springer Nature Switzerland AG, p. 1135. https://doi.org/10.1007/978-3-030-14265-0_5
- Genheden G., Essex J.W., Lee A.G. 2017. G protein coupled receptor interactions with cholesterol deep in the membrane. Biochim. Biophys. Acta. 1859, 268–281.
- Saxena R., Chattopadhyay A. 2012. Membrane cholesterol stabilizes the human serotonin(1A) receptor. Biochim. Biophys. Acta. 1818 (12), 2936–2942. doi: 10.1016/j.bbamem.2012.07.032
- Sarkar P., Mozumder S., Bej A., Mukherjee S., Sengupta J., Chattopadhyay A. 2020. Structure, dynamics and lipid interactions of serotonin receptors: Excitements and challenges. Biophys. Rev. 13 (1), 101–122. doi: 10.1007/s12551-020-00772-8
- Santiago J., Guzmàn G.R., Rojas L.V., Marti R., Asmar-Rovira G.A., Santana L.F., McNamee M., Lasalde-Dominicci J.A. 2001. Probing the effects of membrane cholesterol in the Torpedo californica acetylcholine receptor and the novel lipid-exposed mutation alpha C418W in Xenopus oocytes. J. Biol. Chem. 276, 46523–46532. doi: 10.1074/jbc.M104563200
- Vallés A.S., Barrantes F.J. 2021. Dysregulation of neuronal nicotinic acetylcholine receptor cholesterol crosstalk in autism spectrum disorder. Front. Mol. Neurosci. 14, 744597. doi: 10.3389/fnmol.2021.744597
- Borroni V., Baier C.J., Lang T., Bonini I., White M.M., Garbus I., Barrantes F.J. 2007. Cholesterol depletion activates rapid internalization of submicronsized acetylcholine receptor domains at the cell membrane. Mol. Membr. Biol. 24 (1), 1–15. doi: 10.1080/09687860600903387
- Antonini A., Caioli S., Saba L., Vindigni G., Biocca S., Canu N., Zona C. 2018. Membrane cholesterol depletion in cortical neurons highlights altered NMDA receptor functionality in a mouse model of amyotrophic lateral sclerosis. Biochim. Biophys. Acta. Mol. Basis Dis. 1864 (2), 509–519. doi: 10.1016/j.bbadis.2017.11.008
- Yao L., Wells M., Wu X., Xu Y., Zhang L., Xiong W. 2020. Membrane cholesterol dependence of cannabinoid modulation of glycine receptor. FASEB J. 34 (8), 10920–10930. doi: 10.1096/fj.201903093R
- Kwiatkowska K., Frey J., Sobota A. 2003. Phosphorylation of FcγRIIA is required for the receptor-induced actin rearrangement and capping: The role of membrane rafts. J. Cell Sci. 116, 989–998.
- Febbraio M., Hajjar D.P., Silverstein R.L. 2001. CD36: A class B scavenger receptor involved in angiogenesis, atherosclerosis, inflammation, and lipid metabolism. J. Clin. Invest. 108, 785–791. doi: 10.1172/JCI200114006
- Han J., Hajjar D.P., Tauras J.M., Nicholson A.C. 1999. Cellular cholesterol regulates expression of the macrophage type B scavenger receptor, CD36. J. Lipid Res. 40, 830–838.
- McGilvray I.D., Serghides L., Kapus A., Rotstein O.D., Kain K.C. 2000. Nonopsonic monocyte/macrophage phagocytosis of Plasmodium falciparum-parasitized erythrocytes: A role for CD36 in malarial clearance. Blood. 96, 3231–3240.
- Grouleff J., Irudayam S.J., Skeby K.K., Schiøtt B. 2015. The influence of cholesterol on membrane protein structure, function, and dynamics studied by molecular dynamics simulations. Biochim. Biophys. Acta – Biomembranes. 1848 (9), 1783–1795. https://doi.org/10.1016/j.bbamem.2015.03.029
- Oh H., Mohler E.R. III, Tian A., Baumgart T., Diamond S.L. 2009. Membrane cholesterol is a biomechanical regulator of neutrophil adhesion. Arterioscler. Thromb. Vasc. Biol. 29, 1290–1297.
- Sitrin R.G., Sassanella T.M., Landers J.J., Petty H.R. 2010. Migrating human neutrophils exhibit dynamic spatiotemporal variation in membrane lipid organization. Amer. J. Respir. Cell Mol. Biol. 43, 498–506.
- Lajoie P., Nabi I.R. 2007. Regulation of raft dependent endocytosis. J. Cell Mol. Med. 11 (4), 644–653.
- Cho Y.Y., Kwon O.H., Chung S. 2020. Preferred endocytosis of amyloid precursor protein from cholesterol-enriched lipid raft microdomains. Molecules. 25 (23), 5490. doi: 10.3390/molecules25235490
- Thiele C., Hannah M.J., Fahrenholz F., Huttner W.B. 2000. Cholesterol binds to synaptophysin and is required for biogenesis of synaptic vesicles. Nat. Cell Biol. 2, 42–49. doi: 10.1038/71366
- Bryan A.M., Farnoud A.M., Mor V., Del Poeta M. 2014. Macrophage cholesterol depletion and its effect on the phagocytosis of Cryptococcus neoformans. J. Vis. Exp. 94, 52432. doi: 10.3791/52432
- Baranova I.N., Kurlander R., Bocharov A.V., Vishnyakova T.G., Chen Z., Remaley A.T., Csako G., Patterson A.P., Eggerman T.L. 2008. Role of human CD36 in bacterial recognition, phagocytosis, and pathogen-induced JNK-mediated signaling. J. Immunol. 181, 7147–7156.
- Дунина-Барковская А.Я., Вишнякова Х.С., Баратова Л.А., Радюхин В.А. 2019. Модуляция холестерин-зависимой активности макрофагов IC-21 пептидом, содержащим два CRAC-мотива из белка M1 вируса гриппа. Биол. мембраны. 36 (4), 271–280.
- Дунина-Барковская А.Я., Вишнякова Х.С. 2020. Модуляция холестерин-зависимой активности макрофагов IC-21 CRAC-содержащими пептидами с заменами мотивообразующих аминокислот. Биол. мембраны. 37 (5), 381–395.
- Maltan L., Andova A.M., Derler I. 2022. The role of lipids in CRAC channel function. Biomolecules. 12 (3), 352. doi: 10.3390/biom12030352
- Derler I., Jardin I., Stathopulos P.B., Muik M., Fahrner M., Zayats V., Pandey S.K., Poteser M., Lackner B., Absolonova M., Schindl R., Groschner K., Ettrich R., Ikura M., Romanin C. 2016. Cholesterol modulates Orai1 channel function. Sci. Signal. 9, ra10. doi: 10.1126/scisignal.aad7808
- Bohórquez-Hernández A., Gratton E., Pacheco J., Asanov A., Vaca L. 2017. Cholesterol modulates the cellular localization of Orai1 channels and its disposition among membrane domains. Biochim. Biophys. Acta. 1862, 1481–1490. doi: 10.1016/j.bbalip.2017.09.005
- Kovarova M., Wassif C., Odom S., Liao K., Porter F.D., Rivera J. 2006. Cholesterol deficiency in a mouse model of Smith–Lemli–Opitz syndrome reveals increased mast cell responsiveness. J. Exp. Med. 203, 1161–1171. doi: 10.1084/jem.20051701
- Pacheco J., Dominguez L., Hernandez A.B., Asanov A., Vaca L. 2016. A cholesterol-binding domain in STIM1 modulates STIM1-Orai1 physical and functional interactions. Sci. Rep. 6, 29634. doi: 10.1038/srep29634
- Li H., Papadopoulos V. 1998. Peripheral–type benzodiazepine receptor function in cholesterol transport. Identification of a putative cholesterol recognition/interaction amino acid sequence and consensus pattern. Endocinology. 139, 4991–4997. doi: 10.1016/s0039-128x(96)00154-7
- Jamin N., Neumann J.M., Ostuni M.A., Vu T.K., Yao Z.X., Murail S., Robert J.C., Giatzakis C., Papadopoulos V., Lacapère J.J. 2005. Characterization of the cholesterol recognition amino acid consensus sequence of the peripheral-type benzodiazepine receptor. Mol. Endocrinol. 19 (3), 588–594. doi: 10.1210/me.2004-0308
- Fantini J., Barrantes F.J. 2013. How cholesterol interacts with membrane proteins: An exploration of cholesterol-binding sites including CRAC, CARC, and tilted domains. Front. Physiol. 4, 31. doi: 10.3389/fphys.2013.00031
- Listowski M.A., Leluk J., Kraszewski S., Sikorski A.F. 2015. Cholesterol interaction with the MAGUK protein family member, MPP1, via CRAC and CRAC like motifs: An in silico docking analysis. PLoS One. 10 (7), e0133141. doi: 10.1371/journal.Pone.0133141
- Fantini J., Epand R.M., Barrantes F.J. 2019. Cholesterol recognition motifs in membrane proteins. In: Direct mechanisms in cholesterol modulation of protein function. Eds. Rosenhouse-Dantsker A., Bukiya A. Series Advances in Experimental Medicine and Biology. Cham: Springer. 1135, 3–25. doi: 10.1007/978-3-030-14265-0_1
- Rajagopalan L., Greeson J.N., Xia A., Liu H., Sturm A., Raphael R.M., Davidson A.L., Oghalai J.S., Pereira F.A., Brownell W.E. 2007. Tuning of the outer hair cell motor by membrane cholesterol. J. Biol. Chem. 282 (50), 36659–36670. doi: 10.1074/jbc.M705078200
- Purcell E.K., Liu L., Thomas P.V., Duncan R.K. 2011. Cholesterol influences voltage-gated calcium channels and BK-type potassium channels in auditory hair cells. PLoS One. 6 (10), e26289. doi: 10.1371/journal.pone.0026289
- Zidovetzki R., Levitan I. 2007. Use of cyclodextrins to manipulate plasma membrane cholesterol content: Evidence, misconceptions and control strategies. Biochim. Biophys. Acta. 1768, 1311–1324. doi: 10.1016/j.bbamem.2007.03.026
- Kurkov S.V., Loftsson T. 2013. Cyclodextrins. Int. J. Pharm. 453 (1), 167–180. doi: 10.1016/j.ijpharm.2012.06.055
- Singh A.K., McMillan J., Bukiya A.N., Burton B., Parrill A.L., Dopico A.M. 2012. Multiple cholesterol recognition/interaction amino acid consensus (CRAC) motifs in cytosolic C tail of Slo1 subunit determine cholesterol sensitivity of Ca2+- and voltage-gated K+ (BK) channels. J. Biol. Chem. 287 (24), 20509–20521. doi: 10.1074/jbc.M112.356261
- Albert A.D., Boesze-Battaglia K. 2005. The role of cholesterol in rod outer segment membranes. Prog. Lipid Res. 44 (2–3), 99–124. doi: 10.1016/j.plipres.2005.02.001
- Boesze-Battaglia K., Fliesler S.J., Albert A.D. 1990. Relationship of cholesterol content to spatial distribution and age of disc membranes in retinal rod outer segments. J. Biol. Chem. 265, 18867–18870.
- Andrews L.D., Cohen A.I. 1979. Freeze-fracture evidence for the presence of cholesterol in particle-free patches of basal disks and the plasma membrane of retinal rod outer segments of mice and frogs. J. Cell Biol. 81, 215–228.
- Niu S.L., Mitchell D.C., Litman B.J. 2002. Manipulation of cholesterol levels in rod disk membranes by methyl-beta-cyclodextrin: Effects on receptor activation. J. Biol. Chem. 277, 20139–20145. doi: 10.1074/jbc.M200594200
- Park P.S. 2021. Supramolecular organization of rhodopsin in rod photoreceptor cell membranes. Pflügers Arch. 473 (9), 1361–1376. doi: 10.1007/s00424-021-02522-5
- Albert A.D., Boesze-Battaglia K., Paw Z., Watts A., Epand R.M. 1996. Effect of cholesterol on rhodopsin stability in disk membranes. Biochim. Biophys. Acta. 1297 (1), 77–82. https://doi.org/10.1016/0167-4838(96)00102-1
- Островский М.А. ٢٠٢٤. Проект “Родопсин”. Биол. мембраны. 41 (3).
- Dunina-Barkovskaya A. 2023. Influenza virus and cholesterol: Touch points and potential consequences for the host cell. Med. Res. Arch. 11 (9). https://doi.org/10.18103/mra.v11i9.4399
- Dunina-Barkovskaya A. 2021. Cholesterol recognition motifs (CRAC) in the S protein of coronavirus: A possible target for antiviral therapy? In: Management of Dyslipidemia. Ed. Aronow W.S. IntechOpen. https://doi.org/10.5772/intechopen.95977
- Nayak D.P., Hui E.K.-W., Barman S. 2004. Assembly and budding of influenza virus. Virus. Res. 106, 147–165. doi: 10.1016/j.virusres.2004.08.012
- Chazal N., Gerlier D. 2003. Virus entry, assembly, budding, and membrane rafts. Microbiol. Mol. Biol. Rev. 67 (2), 226–237. doi 10.1128/ mmbr.67.2.226-237.2003
- Jones J.E., Le Sage V., Lakdawala S.S. 2020. Viral and host heterogeneity and their effects on the viral life cycle. Nat. Rev. Microbiol. 6, 1–11. doi: 10.1038/s41579-020-00449-9
- Navaratnarajah C.K., Warrier R., Kuhn R.J. 2008. Assembly of viruses: Enveloped particles. Encyclopedia of Virology, 193–200. doi: 10.1016/B978-012374410-4.00667-1
- Zhang J., Pekosz A., Lamb R.A. 2000. Influenza virus assembly and lipid raft microdomains: A role for the cytoplasmic tails of the spike glycoproteins. J. Virol. 74, 4634–4644. doi: 10.1128/jvi.74.10.4634-4644.2000
- Rawat S.S., Viard M., Gallo S.A., Rein A., Blumenthal R., Puri A. 2003. Modulation of entry of enveloped viruses by cholesterol and sphingolipids (Review). Mol. Membr. Biol. 20 (3), 243–254. doi: 10.1080/0968768031000104944
- Nayak D.P., Hui E.K. 2004. The role of lipid microdomains in virus biology. Subcell. Biochem. 37, 443–491. doi: 10.1007/978-1-4757-5806-1_14
- Frensing T., Kupke S.Y., Bachmann M., Fritzsche S., Gallo-Ramirez L.E., Reichl U. 2016. Influenza virus intracellular replication dynamics, release kinetics, and particle morphology during propagation in MDCK cells. Appl. Microbiol. Biotechnol. 100 (16), 7181–7192. doi: 10.1007/s00253-016-7542-4
- Radenkovic D., Chawla S., Pirro M., Sahebkar A., Banach M. 2020. Cholesterol in relation to COVID-19: Should we care about it? J. Clin. Med. 9, 1909. doi: 10.3390/jcm9061909
- Hu X., Chen D., Wu L., He G., Ye W. 2020. Declined serum high density lipoprotein cholesterol is associated with the severity of COVID-19 infection. Clin. Chim. Acta. 510, 105–110. doi: 10.1016/j.cca.2020.07.015
- Hanson J.M., Gettel D.L., Tabaei S.R., Jackman J., Kim M.C., Sasaki D.Y., Groves J.T., Liedberg B., Cho N.-J., Parikh A.N. 2016. Cholesterol-enriched domain formation induced by viral encoded, membrane-active amphipathic peptide. Biophys. J. 110, 176–187. doi: 10.1016/j.bpj.2015.11.032
- Cheng G., Montero A., Gastaminza P., Whitten-Bauer C., Wieland S.F., Isogawa M., Fredericksen B., Selvarajah S., Gallay P.A., Ghadiri M.R., Chisari F.V. 2008. A virocidal amphipathic α-helical peptide that inhibits hepatitis C virus infection in vitro. Proc. Natl. Acad. Sci. USA. 105, 3088–3093. doi: 10.1073/pnas.0712380105
- Hildebrandt E., Mcgee D.J. 2009. Helicobacter pylori lipopolysaccharide modification, Lewis antigen expression, and gastric colonization are cholesterol-dependent. BMC Microbiol. 9, 258. doi: 10.1186/1471-2180-9-258
- Morey P., Pfannkuch L., Pang E., Boccellato F., Sigal M., Imai-Matsushima A., Dyer V., Koch M., Mollenkopf H.J., Schlaermann P., Meyer T.F. 2018. Helicobacter pylori depletes cholesterol in gastric glands to prevent interferon gamma signaling and escape the inflammatory response. Gastroenterology. 154, 1391–1404. doi: 10.1053/j.gastro.2017.12.008
- Baj J., Forma A., Sitarz M., Portincasa P., Garruti G., Krasowska D., Maciejewski R. 2020. Helicobacter pylori virulence factors mechanisms of bacterial pathogenicity in the gastric microenvironment. Cells. 10 (1), 27. doi: 10.3390/cells10010027
- Rella A., Farnoud A.M., Del Poeta M. 2016. Plasma membrane lipids and their role in fungal virulence. Prog Lipid Res. 61, 63–72. doi: 10.1016/j.plipres.2015.11.003
- Joffrion T.M., Cushion M.T. 2010. Sterol biosynthesis and sterol uptake in the fungal pathogen Pneumocystis carinii. FEMS Microbiol Lett. 311 (1), 1–9. doi: 10.1111/j.1574-6968.2010.02007.x
- Griffin J.E., Pandey A.K., Gilmore S.A., Mizrahi V., McKinney J.D., Bertozzi C.R., Sassetti C.M. 2012. Cholesterol catabolism by Mycobacterium tuberculosis requires transcriptional and metabolic adaptations. Chem. Biol. 19 (2), 218–227. doi: 10.1016/j.chembiol.2011.12.016
- Bonds A.C., Sampson N.S. 2018. More than cholesterol catabolism: Regulatory vulnerabilities in Mycobacterium tuberculosis. Curr. Opin. Chem. Biol. 44, 39–46. doi: 10.1016/j.cbpa.2018.05.012
- Ouellet H., Johnston J.B., de Montellano P.R. 2011. Cholesterol catabolism as a therapeutic target in Mycobacterium tuberculosis. Trends Microbiol. 19 (11), 530–539. doi: 10.1016/j.tim.2011.07.009
- Maguire P.A., Sherman I.W. 1990. Phospholipid composition, cholesterol content and cholesterol exchange in Plasmodium falciparum-infected red cells. Mol. Biochem. Parasitol. 38, 105–112. doi: 10.1016/0166-6851(90)90210-d
- Ahiya A.I., Bhatnagar S., Morrisey J.M., Beck J.R., Vaidya A.B. 2022. Dramatic consequences of reducing erythrocyte membrane cholesterol on Plasmodium falciparum. Microbiol Spectr. 10 (1), e0015822. doi: 10.1128/spectrum.00158-22
- Maier A.G., van Ooij C. 2022. The role of cholesterol in invasion and growth of malaria parasites. Front. Cell. Infect. Microbiol. 12, 984049. doi: 10.3389/fcimb.2022.984049
- Samuel B.U., Mohandas N., Harrison T., McManus H., Rosse W., Reid M., Haldar K. 2001. The role of cholesterol and glycosylphosphatidylinositol-anchored proteins of erythrocyte rafts in regulating raft protein content and malarial infection. J. Biol. Chem. 276, 29319–29329. https://doi.org/10.1074/jbc.M101268200
- Glinsky G.V. 2020. Tripartite combination of candidate pandemic mitigation agents: Vitamin D, quercetin, and estradiol manifest properties of medicinal agents for targeted mitigation of the COVID-19 pandemic defined by genomics guided tracing of SARS-CoV-2 targets in human cells. Biomedicines. 8 (5), 129. doi: 10.3390/biomedicines8050129
- Cinatl J., Morgenstern B., Bauer G., Chandra P., Rabenau H., Doerr H.W. 2003. Glycyrrhizin, an active component of liquorice roots, and replication of SARS-associated coronavirus. Lancet. 361, 2045–2046. doi: 10.1016/s0140-6736(03)13615-x
- Gao Y., Ye S., Tang Y., Tong W., Sun S. 2023. Brain cholesterol homeostasis and its association with neurodegenerative diseases. Neurochem Int. 171, 105635. doi: 10.1016/j.neuint.2023.105635
- Auld D.S., Kornecook T.J., Bastianetto S., Quirion R. 2002. Alzheimer’s disease and the basal forebrain cholinergic system: Relations to beta amyloid peptides, cognition, and treatment strategies. Prog. Neurobiol. 68, 209–245.
- Schliebs R., Arendt T. 2006. The significance of the cholinergic system in the brain during aging and in Alzheimer’s disease. J. Neural. Transm. (Vienna Austria). 113, 1625–1644. doi: 10.1007/s00702-006-0579-2
- Valencia A., Reeves P.B., Sapp E., Li X., Alexander J., Kegel K.B., Chase K., Aronin N., DiFiglia M. 2010. Mutant huntingtin and glycogen synthase kinase 3-beta accumulate in neuronal lipid rafts of a presymptomatic knock-in mouse model of Huntington’s disease. J. Neurosci. Res. 88, 179–190.
- Jin U., Park S.J., Park S.M. 2019. Cholesterol metabolism in the brain and its association with Parkinson’s disease. Exp. Neurobiol. 28 (5), 554–567. doi: 10.5607/en.2019.28.5.554
- Hartmann H., Ho W.Y., Chang J.C., Ling S.C. 2022. Cholesterol dyshomeostasis in amyotrophic lateral sclerosis: Cause, consequence, or epiphenomenon? FEBS J. 289 (24), 7688–7709. doi: 10.1111/febs.16175
- Fukui K., Ferris H.A., Kahn C.R. 2015. Effect of cholesterol reduction on receptor signaling in neurons. J. Biol. Chem. 290 (44), 26383–26392. doi: 10.1074/jbc.M115.664367
- Andronie-Cioară F.L., Jurcău A., Jurcău M.C., Nistor-Cseppentö D.C., Simion A. 2022. Cholesterol management in neurology: Time for revised strategies? J. Pers. Med. 12, 1981. https://doi.org/10.3390/jpm12121981
- Shobab L.A., Hsiung G.Y.R., Feldman H.H. 2005. Cholesterol in Alzheimer’s disease. Lancet Neurol. 4 (12), 841–852. https://doi.org/10.1016/S1474-4422(05)70248-9
- Ji S.R., Wu Y., Sui S.F. 2002. Cholesterol is an important factor affecting the membrane insertion of beta-amyloid peptide (Aβ1–40), which may potentially inhibit the fibril formation. J. Biol. Chem. 277 (8), 6273–6279. doi: 10.1074/jbc.M104146200
- Vallés A.S., Barrantes F.J. 2021. Dysregulation of neuronal nicotinic acetylcholine receptor cholesterol crosstalk in autism spectrum disorder. Front. Mol. Neurosci. 14, 744597. doi: 10.3389/fnmol.2021.744597
- Borroni V., Baier C.J., Lang T., Bonini I., White M.M., Garbus I., Barrantes F.J. 2007. Cholesterol depletion activates rapid internalization of submicronsized acetylcholine receptor domains at the cell membrane. Mol. Membr. Biol. 24 (1), 1–15. doi: 10.1080/09687860600903387
- Valencia A., Reeves P.B., Sapp E., Li X., Alexander J., Kegel K.B., Chase K., Aronin N., DiFiglia M. 2010. Mutant huntingtin and glycogen synthase kinase 3-beta accumulate in neuronal lipid rafts of a presymptomatic knock-in mouse model of Huntington’s disease. J. Neurosci. Res. 88, 179–190.
- Vanier M.T. 2010. Niemann–Pick disease type C. Orphanet J. Rare Dis. 5, 16. doi: 10.1186/1750-1172-5-16
- Matsuo M., Togawa M., Hirabaru K., Mochinaga S., Narita A., Adachi M., Egashira M., Irie T., Ohno K. 2013. Effects of cyclodextrin in two patients with Niemann–Pick Type C disease. Mol. Genet. Metab. 108 (1), 76–81. doi: 10.1016/j.ymgme.2012.11.005
Arquivos suplementares
