Recombinant Protein Biosensors of Cell Membrane Lipids
- Authors: Koltsova E.M.1,2, Kolchin N.A.1,2, Nikolaeva E.I.1,2, Butov K.R.1,3
-
Affiliations:
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology
- Center of Theoretical Problems of Physico-chemical Pharmacology of the Russian Academy of Sciences
- Pirogov Russian National Research Medical University
- Issue: Vol 42, No 2 (2025)
- Pages: 87-106
- Section: ОБЗОРЫ
- URL: https://gynecology.orscience.ru/0233-4755/article/view/680868
- DOI: https://doi.org/10.31857/S0233475525020017
- EDN: https://elibrary.ru/UGCPTI
- ID: 680868
Cite item
Abstract
Specific patterns of lipid distribution in cell membranes determine their structural and signaling roles, and ensure the integrity and functionality of the plasma membrane and cell organelles. Recent advances in the development of recombinant lipid biosensors and imaging techniques allow direct observation of the distribution, movement, and dynamics of lipids within cells, significantly expanding the understanding of lipid functions and their involvement in cellular and subcellular processes. In this review, we summarize the data related to the development and application of recombinant protein sensors for various lipids in cell membranes.
Keywords
Full Text

About the authors
E. M. Koltsova
Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology; Center of Theoretical Problems of Physico-chemical Pharmacology of the Russian Academy of Sciences
Author for correspondence.
Email: ekaterina_koltsova@bk.ru
Russian Federation, Moscow, 117997; Moscow, 109029
N. A. Kolchin
Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology; Center of Theoretical Problems of Physico-chemical Pharmacology of the Russian Academy of Sciences
Email: ekaterina_koltsova@bk.ru
Russian Federation, Moscow, 117997; Moscow, 109029
E. I. Nikolaeva
Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology; Center of Theoretical Problems of Physico-chemical Pharmacology of the Russian Academy of Sciences
Email: ekaterina_koltsova@bk.ru
Russian Federation, Moscow, 117997; Moscow, 109029
K. R. Butov
Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology; Pirogov Russian National Research Medical University
Email: ekaterina_koltsova@bk.ru
Russian Federation, Moscow, 117997; Moscow, 117513
References
- Van Meer G., Lisman Q. 2002. Sphingolipid transport: Rafts and translocators. J. Biol. Chem. 277, 25855–25858. doi: 10.1074/jbc.R200010200
- Marsh D. 2009. Cholesterol-induced fluid membrane domains: A compendium of lipid-raft ternary phase diagrams. Biochim. Biophys. Acta BBA - Biomembr. 1788, 2114–2123. doi: 10.1016/j.bbamem.2009.08.004
- London E. 2005. How principles of domain formation in model membranes may explain ambiguities concerning lipid raft formation in cells. Biochim. Biophys. Acta BBA - Mol. Cell Res. 1746, 203–220. doi: 10.1016/j.bbamcr.2005.09.002
- Van Meer G., Voelker D.R., Feigenson G.W. 2008. Membrane lipids: Where they are and how they behave. Nat. Rev. Mol. Cell Biol. 9, 112–124. doi: 10.1038/nrm2330
- Osawa T., Fujikawa K., Shimamoto K. 2024. Structures, functions, and syntheses of glycero-glycophospholipids. Front. Chem. 12, 1353688. doi: 10.3389/fchem.2024.1353688
- Korbecki J., Bosiacki M., Kupnicka P., Barczak K., Ziętek P., Chlubek D., Baranowska-Bosiacka I. 2024. Biochemistry and diseases related to the interconversion of phosphatidylcholine, phosphatidylethanolamine, and phosphatidylserine. Int. J. Mol. Sci. 25, 10745. doi: 10.3390/ijms251910745
- Chen L., Chen X.-W., Huang X., Song B.-L., Wang Y., Wang Y. 2019. Regulation of glucose and lipid metabolism in health and disease. Sci. China Life Sci. 62, 1420–1458. doi: 10.1007/s11427-019-1563-3
- Burke J.E. 2018. Structural basis for regulation of phosphoinositide kinases and their involvement in human disease. Mol. Cell. 71, 653–673. doi: 10.1016/j.molcel.2018.08.005
- Billcliff P.G., Lowe M. 2014. Inositol lipid phosphatases in membrane trafficking and human disease. Biochem. J. 461, 159–175. doi: 10.1042/BJ20140361
- Maekawa M., Fairn G.D. 2014. Molecular probes to visualize the location, organization and dynamics of lipids. J. Cell Sci. jcs.150524. doi: 10.1242/jcs.150524
- Eurtivong C., Leung E., Sharma N., Leung I.K.H., Reynisson J. 2023. Phosphatidylcholine-specific phospholipase C as a promising drug target. Molecules. 28, 5637. doi: 10.3390/molecules28155637
- Exton J.H. 1994. Phosphatidylcholine breakdown and signal transduction. Biochim. Biophys. Acta BBA – Lipids Lipid Metab. 1212, 26–42. doi: 10.1016/0005-2760(94)90186-4
- Kennedy E.P., Weiss S.B. 1956. The function of cytidine coenzymes in the biosynthesis of phospholipids. J. Biol. Chem. 222, 193–214. doi: 10.1016/S0021-9258(19)50785-2
- Vance D.E., Ridgway N.D. 1988. The methylation of phosphatidylethanolamine. Prog. Lipid Res. 27, 61–79. doi: 10.1016/0163-7827(88)90005-7
- Eichner N.Z.M., Gilbertson N.M., Musante L., La Salvia S., Weltman A., Erdbrügger U., Malin S.K. 2019. An oral glucose load decreases postprandial extracellular vesicles in obese adults with and without prediabetes. Nutrients. 11, 580. doi: 10.3390/nu11030580
- Jimenez J.J., Jy W., Mauro L.M., Soderland C., Horstman L.L., Ahn Y.S. 2003. Endothelial cells release phenotypically and quantitatively distinct microparticles in activation and apoptosis. Thromb. Res. 109, 175–180. doi: 10.1016/S0049-3848(03)00064-1
- Enjeti A., Lincz L., Seldon M. 2007. Detection and measurement of microparticles: An evolving research tool for vascular biology. Semin. Thromb. Hemost. 33, 771–779. doi: 10.1055/s-2007-1000369
- Connor D.E., Exner T., Ma D.D.F., Joseph J.E. 2010. The majority of circulating platelet-derived microparticles fail to bind annexin V, lack phospholipid-dependent procoagulant activity and demonstrate greater expression of glycoprotein Ib. Thromb. Haemost. 103, 1044–1052. doi: 10.1160/TH09-09-0644
- Key N.S. 2010. Analysis of tissue factor positive microparticles. Thromb. Res. 125, S42–S45. doi: 10.1016/j.thromres.2010.01.035
- Ridger V.C., Boulanger C.M., Angelillo-Scherrer A., Badimon L., Blanc-Brude O., Bochaton-Piallat M.-L., Boilard E., Buzas E.I., Caporali A., Dignat-George F., Evans P.C., Lacroix R., Lutgens E., Ketelhuth D.F.J., Nieuwland R., Toti F., Tuñon J., Weber C., Hoefer I.E., Lip G.Y.H., Werner N., Shantsila E., Ten Cate H., Thomas M., Harrison P. 2017. Microvesicles in vascular homeostasis and diseases: Position paper of the European society of cardiology (ESC) working group on atherosclerosis and vascular biology. Thromb. Haemost. 117, 1296–1316. doi: 10.1160/TH16-12-0943
- An S.J., Stagi M., Gould T.J., Wu Y., Mlodzianoski M., Rivera-Molina F., Toomre D., Strittmatter S.M., De Camilli P., Bewersdorf J., Zenisek D. 2022. Multimodal imaging of synaptic vesicles with a single probe. Cell Rep. Methods. 2, 100199. doi: 10.1016/j.crmeth.2022.100199
- Hirano Y., Gao Y.-G., Stephenson D.J., Vu N.T., Malinina L., Simanshu D.K., Chalfant C.E., Patel D.J., Brown R.E. 2019. Structural basis of phosphatidylcholine recognition by the C2–domain of cytosolic phospholipase A2α. eLife. 8, e44760. doi: 10.7554/eLife.44760
- Ward K.E., Ropa J.P., Adu-Gyamfi E., Stahelin R.V. 2012. C2 domain membrane penetration by group IVA cytosolic phospholipase A2 induces membrane curvature changes. J. Lipid Res. 53, 2656–2666. doi: 10.1194/jlr.M030718
- Perisic O., Paterson H.F., Mosedale G., Lara-González S., Williams R.L. 1999. Mapping the phospholipid-binding surface and translocation determinants of the C2 domain from cytosolic phospholipase A2. J. Biol. Chem. 274, 14979–14987. doi: 10.1074/jbc.274.21.14979
- Rand M.L., Wang H., Pluthero F.G., Stafford A.R., Ni R., Vaezzadeh N., Allison A.C., Kahr W.H.A., Weitz J.I., Gross P.L. 2012. Diannexin, an annexin A5 homodimer, binds phosphatidylserine with high affinity and is a potent inhibitor of platelet‐mediated events during thrombus formation. J. Thromb. Haemost. 10, 1109–1119. doi: 10.1111/j.1538-7836.2012.04716.x
- Shao C., Novakovic V.A., Head J.F., Seaton B.A., Gilbert G.E. 2008. Crystal structure of lactadherin C2 domain at 1.7Å resolution with mutational and computational analyses of its membrane-binding motif. J. Biol. Chem. 283, 7230–7241. doi: 10.1074/jbc.M705195200
- Ye H., Li B., Subramanian V., Choi B.-H., Liang Y., Harikishore A., Chakraborty G., Baek K., Yoon H.S. 2013. NMR solution structure of C2 domain of MFG-E8 and insights into its molecular recognition with phosphatidylserine. Biochim. Biophys. Acta BBA – Biomembr. 1828, 1083–1093. doi: 10.1016/j.bbamem.2012.12.009
- Uchida Y., Hasegawa J., Chinnapen D., Inoue T., Okazaki S., Kato R., Wakatsuki S., Misaki R., Koike M., Uchiyama Y., Iemura S., Natsume T., Kuwahara R., Nakagawa T., Nishikawa K., Mukai K., Miyoshi E., Taniguchi N., Sheff D., Lencer W.I., Taguchi T., Arai H. 2011. Intracellular phosphatidylserine is essential for retrograde membrane traffic through endosomes. Proc. Natl. Acad. Sci. 108, 15846–15851. doi: 10.1073/pnas.1109101108
- Nakai W., Yoshida T., Diez D., Miyatake Y., Nishibu T., Imawaka N., Naruse K., Sadamura Y., Hanayama R. 2016. A novel affinity-based method for the isolation of highly purified extracellular vesicles. Sci. Rep. 6, 33935. doi: 10.1038/srep33935
- Miyanishi M., Tada K., Koike M., Uchiyama Y., Kitamura T., Nagata S. 2007. Identification of Tim4 as a phosphatidylserine receptor. Nature. 450, 435–439. doi: 10.1038/nature06307
- Maib H., Adarska P., Hunton R., Vines J.H., Strutt D., Bottanelli F., Murray D.H. 2024. Recombinant biosensors for multiplex and super-resolution imaging of phosphoinositides. J. Cell Biol. 223, e202310095. doi: 10.1083/jcb.202310095
- Pemberton J.G., Kim Y.J., Humpolickova J., Eisenreichova A., Sengupta N., Toth D.J., Boura E., Balla T. 2020. Defining the subcellular distribution and metabolic channeling of phosphatidylinositol. J. Cell Biol. 219, doi: 10.1083/jcb.201906130
- Sankaran V.G., Klein D.E., Sachdeva M.M., Lemmon M.A. 2001. High-affinity binding of a FYVE domain to phosphatidylinositol 3-phosphate requires intact phospholipid but not FYVE Ddomain oligomerization. Biochemistry. 40, 8581–8587. doi: 10.1021/bi010425d
- Burd C.G., Emr S.D. 1998. Phosphatidylinositol(3)-phosphate signaling mediated by specific binding to RING FYVE domains. Mol. Cell. 2, 157–162. doi: 10.1016/S1097-2765(00)80125-2
- Hammond G.R.V., Balla T. 2015. Polyphosphoinositide binding domains: Key to inositol lipid biology. Biochim. Biophys. Acta BBA - Mol. Cell Biol. Lipids. 1851, 746–758. doi: 10.1016/j.bbalip.2015.02.013
- Gaullier J.-M., Rønning E., Gillooly D.J., Stenmark H. 2000. Interaction of the EEA1 FYVE Finger with phosphatidylinositol 3-phosphate and early endosomes. J. Biol. Chem. 275, 24595–24600. doi: 10.1074/jbc.M906554199
- Bravo J., Karathanassis D., Pacold C.M., Pacold M.E., Ellson C.D., Anderson K.E., Butler P.J.G., Lavenir I., Perisic O., Hawkins P.T., Stephens L., Williams R.L. 2001. The crystal structure of the PX domain from p40phox bound to phosphatidylinositol 3-phosphate. Mol. Cell. 8, 829–839. doi: 10.1016/S1097-2765(01)00372-0
- Dolinsky S., Haneburger I., Cichy A., Hannemann M., Itzen A., Hilbi H. 2014. The Legionella longbeachae Icm/dot substrate SidC selectively binds phosphatidylinositol 4-phosphate with nanomolar affinity and promotes pathogen vacuole-endoplasmic reticulum interactions. Infect. Immun. 82, 4021–4033. doi: 10.1128/IAI.01685-14
- He J., Scott J.L., Heroux A., Roy S., Lenoir M., Overduin M., Stahelin R.V., Kutateladze T.G. 2011. Molecular basis of phosphatidylinositol 4-phosphate and ARF1 GTPase recognition by the FAPP1 pleckstrin homology (PH) domain. J. Biol. Chem. 286, 18650–18657. doi: 10.1074/jbc.M111.233015
- Brombacher E., Urwyler S., Ragaz C., Weber S.S., Kami K., Overduin M., Hilbi H. 2009. Rab1 guanine nucleotide exchange factor SidM is a major phosphatidylinositol 4-phosphate-binding effector protein of Legionella pneumophila. J. Biol. Chem. 284, 4846–4856. doi: 10.1074/jbc.M807505200
- Gozani O., Karuman P., Jones D.R., Ivanov D., Cha J., Lugovskoy A.A., Baird C.L., Zhu H., Field S.J., Lessnick S.L., Villasenor J., Mehrotra B., Chen J., Rao V.R., Brugge J.S., Ferguson C.G., Payrastre B., Myszka D.G., Cantley L.C., Wagner G., Divecha N., Prestwich G.D., Yuan J. 2003. The PHD finger of the chromatin-associated protein ING2 functions as a nuclear phosphoinositide receptor. Cell. 114, 99–111. doi: 10.1016/S0092-8674(03)00480-X
- Manna D., Albanese A., Park W.S., Cho W. 2007. Mechanistic basis of differential cellular responses of phosphatidylinositol 3,4-bisphosphate- and phosphatidylinositol 3,4,5-trisphosphate-binding pleckstrin homology domains. J. Biol. Chem. 282, 32093–32105. doi: 10.1074/jbc.M703517200
- Goulden B.D., Pacheco J., Dull A., Zewe J.P., Deiters A., Hammond G.R.V. 2019. A high-avidity biosensor reveals plasma membrane PI(3,4)P2 is predominantly a class I PI3K signaling product. J. Cell Biol. 218, 1066–1079. doi: 10.1083/jcb.201809026
- Vines J.H., Maib H., Buckley C.M., Gueho A., Zhu Z., Soldati T., Murray D.H., King J.S. 2023. A PI(3,5)P2 reporter reveals PIKfyve activity and dynamics on macropinosomes and phagosomes. J. Cell Biol. 222, e202209077. doi: 10.1083/jcb.202209077
- Klein P., Mattoon D., Lemmon M.A., Schlessinger J. 2004. A structure-based model for ligand binding and dimerization of EGF receptors. Proc. Natl. Acad. Sci. 101, 929–934. doi: 10.1073/pnas.0307285101
- Garcia P., Gupta R., Shah S., Morris A.J., Rudge S.A., Scarlata S., Petrova V., McLaughlin S., Rebecchi M.J. 1995. The pleckstrin homology domain of phospholipase C-.delta.1 binds with high affinity to phosphatidylinositol 4,5-bisphosphate in bilayer membranes. Biochemistry. 34, 16228–16234. doi: 10.1021/bi00049a039
- Fukuda M., Kojima T., Kabayama H., Mikoshiba K. 1996. Mutation of the Pleckstrin Homology domain of bruton’s tyrosine kinase in immunodeficiency impaired inositol 1,3,4,5-tetrakisphosphate binding capacity. J. Biol. Chem. 271, 30303–30306. doi: 10.1074/jbc.271.48.30303
- Kassas N., Tanguy E., Thahouly T., Fouillen L., Heintz D., Chasserot-Golaz S., Bader M.-F., Grant N.J., Vitale N. 2017. Comparative characterization of phosphatidic acid sensors and their localization during frustrated phagocytosis. J. Biol. Chem. 292, 4266–4279. doi: 10.1074/jbc.M116.742346
- Makino A., Abe M., Murate M., Inaba T., Yilmaz N., Hullin‐Matsuda F., Kishimoto T., Schieber N.L., Taguchi T., Arai H., Anderluh G., Parton R.G., Kobayashi T. 2015. Visualization of the heterogeneous membrane distribution of sphingomyelin associated with cytokinesis, cell polarity, and sphingolipidosis. FASEB J. 29, 477–493. doi: 10.1096/fj.13-247585
- Kiyokawa E., Baba T., Otsuka N., Makino A., Ohno S., Kobayashi T. 2005. Spatial and functionalheterogeneity of sphingolipid-rich membrane domains. J. Biol. Chem. 280, 24072–24084. doi: 10.1074/jbc.M502244200
- Hong Q., Gutiérrez-Aguirre I., Barlič A., Malovrh P., Kristan K., Podlesek Z., Maček P., Turk D., González-Mañas J.M., Lakey J.H., Anderluh G. 2002. Two-step membrane binding by Equinatoxin II, a pore-forming toxin from the sea anemone, involves an exposed aromatic cluster and a flexible helix. J. Biol. Chem. 277, 41916–41924. doi: 10.1074/jbc.M204625200
- Yokoyama J., Matsuda T., Koshiba S., Tochio N., Kigawa T. 2011. A practical method for cell-free protein synthesis to avoid stable isotope scrambling and dilution. Anal. Biochem. 411, 223–229. doi: 10.1016/j.ab.2011.01.017.
- Makino A., Abe M., Ishitsuka R., Murate M., Kishimoto T., Sakai S., Hullin‐Matsuda F., Shimada Y., Inaba T., Miyatake H., Tanaka H., Kurahashi A., Pack C., S. Kasai R., Kubo S., L. Schieber N., Dohmae N., Tochio N., Hagiwara K., Sasaki Y., Aida Y., Fujimori F., Kigawa T., Nishibori K., Parton R.G., Kusumi A., Sako Y., Anderluh G., Yamashita M., Kobayashi T., Greimel P., Kobayashi T. 2017. A novel sphingomyelin/cholesterol domain‐specific probe reveals the dynamics of the membrane domains during virus release and in Niemann‐Pick type C. FASEB J. 31, 1301–1322. doi: 10.1096/fj.201500075R
- Bhat H.B., Ishitsuka R., Inaba T., Murate M., Abe M., Makino A., Kohyama-Koganeya A., Nagao K., Kurahashi A., Kishimoto T., Tahara M., Yamano A., Nagamune K., Hirabayashi Y., Juni N., Umeda M., Fujimori F., Nishibori K., Yamaji-Hasegawa A., Greimel P., Kobayashi T. 2015. Evaluation of aegerolysins as novel tools to detect and visualize ceramide phosphoethanolamine, a major sphingolipid in invertebrates. FASEB J. 29, 3920–3934. doi: 10.1096/fj.15-272112
- Shimada Y., Maruya M., Iwashita S., Ohno‐Iwashita Y. 2002. The C‐terminal domain of perfringolysin O is an essential cholesterol‐binding unit targeting to cholesterol‐rich microdomains. Eur. J. Biochem. 269, 6195–6203. doi: 10.1046/j.1432-1033.2002.03338.x
- Buwaneka P., Ralko A., Liu S.-L., Cho W. 2021. Evaluation of the available cholesterol concentration in the inner leaflet of the plasma membrane of mammalian cells. J. Lipid Res. 62, 100084. doi: 10.1016/j.jlr.2021.100084
- Cocklin S., Jost M., Robertson N.M., Weeks S.D., Weber H., Young E., Seal S., Zhang C., Mosser E., Loll P.J., Saunders A.J., Rest R.F., Chaiken I.M. 2006. Real‐time monitoring of the membrane‐binding and insertion properties of the cholesterol‐dependent cytolysin anthrolysin O from Bacillus anthracis. J. Mol. Recognit. 19, 354–362. doi: 10.1002/jmr.784
- Yamaji-Hasegawa A., Murate M., Inaba T., Dohmae N., Sato M., Fujimori F., Sako Y., Greimel P., Kobayashi T. 2022. A novel sterol-binding protein reveals heterogeneous cholesterol distribution in neurite outgrowth and in late endosomes/lysosomes. Cell. Mol. Life Sci. 79, 324. doi: 10.1007/s00018-022-04339-6
- Koh D.H.Z., Naito T., Na M., Yeap Y.J., Rozario P., Zhong F.L., Lim K.-L., Saheki Y. 2023. Visualization of accessible cholesterol using a GRAM domain-based biosensor. Nat. Commun. 14, 6773. doi: 10.1038/s41467-023-42498-7
- Wang S., Zhang S., Liou L.-C., Ren Q., Zhang Z., Caldwell G.A., Caldwell K.A., Witt S.N. 2014. Phosphatidylethanolamine deficiency disrupts α-synuclein homeostasis in yeast and worm models of Parkinson disease. Proc. Natl. Acad. Sci. 111, doi: 10.1073/pnas.1411694111
- Vance J.E. 2015. Phospholipid synthesis and transport in mammalian cells. Traffic. 16, 1–18. doi: 10.1111/tra.12230
- Bogdanov M., Dowhan W., Vitrac H. 2014. Lipids and topological rules governing membrane protein assembly. Biochim. Biophys. Acta BBA - Mol. Cell Res. 1843, 1475–1488. doi: 10.1016/j.bbamcr.2013.12.007
- Tatsuta T., Scharwey M., Langer T. 2014. Mitochondrial lipid trafficking. Trends Cell Biol. 24, 44–52. doi: 10.1016/j.tcb.2013.07.011
- Siegel D.P., Epand R.M. 2000. Effect of influenza hemagglutinin fusion peptide on lamellar/inverted phase transitions in dipalmitoleoylphosphatidylethanolamine: implications for membrane fusion mechanisms. Biochim. Biophys. Acta BBA - Biomembr. 1468, 87–98. doi: 10.1016/S0005-2736(00)00246-7
- Yang L., Ding L., Huang H.W. 2003. New Phases of phospholipids and implications to the membrane fusion problem. Biochemistry. 42, 6631–6635. doi: 10.1021/bi0344836
- Calzada E., Avery E., Sam P.N., Modak A., Wang C., McCaffery J.M., Han X., Alder N.N., Claypool S.M. 2019. Phosphatidylethanolamine made in the inner mitochondrial membrane is essential for yeast cytochrome bc1 complex function. Nat. Commun. 10, 1432. doi: 10.1038/s41467-019-09425-1
- Shinzawa-Itoh K., Aoyama H., Muramoto K., Terada H., Kurauchi T., Tadehara Y., Yamasaki A., Sugimura T., Kurono S., Tsujimoto K., Mizushima T., Yamashita E., Tsukihara T., Yoshikawa S. 2007. Structures and physiological roles of 13 integral lipids of bovine heart cytochrome c oxidase. EMBO J. 26, 1713–1725. doi: 10.1038/sj.emboj.7601618
- Ichimura Y., Kirisako T., Takao T., Satomi Y., Shimonishi Y., Ishihara N., Mizushima N., Tanida I., Kominami E., Ohsumi M., Noda T., Ohsumi Y. 2000. A ubiquitin-like system mediates protein lipidation. Nature. 408, 488–492. doi: 10.1038/35044114
- Kagan V.E., Mao G., Qu F., Angeli J.P.F., Doll S., Croix C.S., Dar H.H., Liu B., Tyurin V.A., Ritov V.B., Kapralov A.A., Amoscato A.A., Jiang J., Anthonymuthu T., Mohammadyani D., Yang Q., Proneth B., Klein-Seetharaman J., Watkins S., Bahar I., Greenberger J., Mallampalli R.K., Stockwell B.R., Tyurina Y.Y., Conrad M., Bayır H. 2017. Oxidized arachidonic and adrenic PEs navigate cells to ferroptosis. Nat. Chem. Biol. 13, 81–90. doi: 10.1038/nchembio.2238
- Deleault N.R., Piro J.R., Walsh D.J., Wang F., Ma J., Geoghegan J.C., Supattapone S. 2012. Isolation of phosphatidylethanolamine as a solitary cofactor for prion formation in the absence of nucleic acids. Proc. Natl. Acad. Sci. 109, 8546–8551. doi: 10.1073/pnas.1204498109
- Banfield M.J., Barker J.J., Perry A.C., Brady R.L. 1998. Function from structure? The crystal structure of human phosphatidylethanolamine-binding protein suggests a role in membrane signal transduction. Structure. 6, 1245–1254. doi: 10.1016/S0969-2126(98)00125-7
- Bucquoy S., Jollès P., Schoentgen F. 1994. Relationships between molecular interactions (nucleotides, lipids and proteins) and structural features of the bovine brain 21‐kDa protein. Eur. J. Biochem. 225, 1203–1210. doi: 10.1111/j.1432-1033.1994.1203b.x
- Serre L., Vallée B., Bureaud N., Schoentgen F., Zelwer C. 1998. Crystal structure of the phosphatidylethanolamine-binding protein from bovine brain: A novel structural class of phospholipid-binding proteins. Structure. 6, 1255–1265. doi: 10.1016/S0969-2126(98)00126-9
- Vallée B.S., Tauc P., Brochon J., Maget‐Dana R., Lelièvre D., Metz‐Boutigue M., Bureaud N., Schoentgen F. 2001. Behaviour of bovine phosphatidylethanolamine‐binding protein with model membranes: Evidence of affinity for negatively charged membranes. Eur. J. Biochem. 268, 5831–5841. doi: 10.1046/j.0014-2956.2001.02528.x
- Bernier I., Tresca J.-P., Jollès P. 1986. Ligand-binding studies with a 23 kDa protein purified from bovine brain cytosol. Biochim. Biophys. Acta BBA – Protein Struct. Mol. Enzymol. 871, 19–23. doi: 10.1016/0167-4838(86)90128-7
- Hou S., Johnson S.E., Zhao M. 2015. A one‐step staining probe for phosphatidylethanolamine. ChemBioChem. 16, 1955–1960. doi: 10.1002/cbic.201500127
- Machaidze G., Ziegler A., Seelig J. 2002. Specific binding of Ro 09-0198 (Cinnamycin) to phosphatidylethanolamine: A thermodynamic analysis. Biochemistry. 41, 1965–1971. doi: 10.1021/bi015841c
- Hayashi F., Nagashima K., Terui Y., Kawamura Y., Matsumoto K., Itazaki H. 1990. The structure of PA48009: The revised structure of duramycin. J. Antibiot. (Tokyo). 43, 1421–1430. doi: 10.7164/antibiotics.43.1421
- Navarro J., Chabot J., Sherrill K., Aneja R., Zahler S.A., Racker E. 1985. Interaction of duramycin with artificial and natural membranes. Biochemistry. 24, 4645–4650. doi: 10.1021/bi00338a025
- Makino A., Baba T., Fujimoto K., Iwamoto K., Yano Y., Terada N., Ohno S., Sato S.B., Ohta A., Umeda M., Matsuzaki K., Kobayashi T. 2003. Cinnamycin (Ro 09-0198) promotes cell binding and toxicity by inducing transbilayer lipid movement. J. Biol. Chem. 278, 3204–3209. doi: 10.1074/jbc.M210347200
- Kay J.G., Fairn G.D. 2019. Distribution, dynamics and functional roles of phosphatidylserine within the cell. Cell Commun. Signal. 17, 126. doi: 10.1186/s12964-019-0438-z
- Vance J.E. 2018. Historical perspective: Phosphatidylserine and phosphatidylethanolamine from the 1800s to the present. J. Lipid Res. 59, 923–944. doi: 10.1194/jlr.R084004
- Zwaal R.F.A., Comfurius P., Bevers E.M. 1998. Lipid–protein interactions in blood coagulation. Biochim. Biophys. Acta BBA – Rev. Biomembr. 1376, 433–453. doi: 10.1016/S0304-4157(98)00018-5
- Leventis P.A., Grinstein S. 2010. The Distribution and function of phosphatidylserine in cellular membranes. Annu. Rev. Biophys. 39, 407–427. doi: 10.1146/annurev.biophys.093008.131234
- Fadok V.A., De Cathelineau A., Daleke D.L., Henson P.M., Bratton D.L. 2001. Loss of phospholipid asymmetry and surface exposure of phosphatidylserine is required for phagocytosis of apoptotic cells by macrophages and fibroblasts. J. Biol. Chem. 276, 1071–1077. doi: 10.1074/jbc.M003649200
- Daleke D.L. 2007. Phospholipid flippases. J. Biol. Chem. 282, 821–825. doi: 10.1074/jbc.R600035200
- Cho W., Stahelin R. 2006. Membrane binding and subcellular targeting of C2 domains. Biochim. Biophys. Acta BBA - Mol. Cell Biol. Lipids. 1761, 838–849. doi: 10.1016/j.bbalip.2006.06.014
- Arikketh D., Nelson R., Vance J.E. 2008. Defining the importance of phosphatidylserine synthase-1 (PSS1). J. Biol. Chem. 283, 12888–12897. doi: 10.1074/jbc.M800714200
- Logue S.E., Elgendy M., Martin S.J. 2009. Expression, purification and use of recombinant annexin V for the detection of apoptotic cells. Nat. Protoc. 4, 1383–1395. doi: 10.1038/nprot.2009.143
- Yen T.-C., Wey S.-P., Liao C.-H., Yeh C.-H., Shen D.-W., Achilefu S., Wun T.-C. 2010. Measurement of the binding parameters of annexin derivative–erythrocyte membrane interactions. Anal. Biochem. 406, 70–79. doi: 10.1016/j.ab.2010.06.048
- Thiagarajan P., Tait J.F. 1990. Binding of annexin V/placental anticoagulant protein I to platelets. Evidence for phosphatidylserine exposure in the procoagulant response of activated platelets. J. Biol. Chem. 265, 17420–17423. doi: 10.1016/S0021-9258(18)38177-8
- Gerke V., Gavins F.N.E., Geisow M., Grewal T., Jaiswal J.K., Nylandsted J., Rescher U. 2024. Annexins—a family of proteins with distinctive tastes for cell signaling and membrane dynamics. Nat. Commun. 15, 1574. doi: 10.1038/s41467-024-45954-0
- Swairjo M.A., Concha N.O., Kaetzel M.A., Dedman J.R., Seaton B.A. 1995. Ca2+-bridging mechanism and phospholipid head group recognition in the membrane-binding protein annexin V. Nat. Struct. Mol. Biol. 2, 968–974. doi: 10.1038/nsb1195-968
- Lemmon M.A. 2008. Membrane recognition by phospholipid-binding domains. Nat. Rev. Mol. Cell Biol. 9, 99–111. doi: 10.1038/nrm2328
- Tietjen G.T., Gong Z., Chen C.-H., Vargas E., Crooks J.E., Cao K.D., Heffern C.T.R., Henderson J.M., Meron M., Lin B., Roux B., Schlossman M.L., Steck T.L., Lee K.Y.C., Adams E.J. 2014. Molecular mechanism for differential recognition of membrane phosphatidylserine by the immune regulatory receptor Tim4. Proc. Natl. Acad. Sci. 111, doi: 10.1073/pnas.1320174111
- Okazaki S., Kato R., Uchida Y., Taguchi T., Arai H., Wakatsuki S. 2012. Structural basis of the strict phospholipid binding specificity of the pleckstrin homology domain of human evectin-2. Acta Crystallogr. D Biol. Crystallogr. 68, 117–123. doi: 10.1107/S0907444911051626
- Lin Y.-C., Chipot C., Scheuring S. 2020. Annexin-V stabilizes membrane defects by inducing lipid phase transition. Nat. Commun. 11, 230. doi: 10.1038/s41467-019-14045-w
- Stuart M.C.A., Reutelingsperger C.P.M., Frederik P.M. 1998. Binding of annexin V to bilayers with various phospholipid compositions using glass beads in a flow cytometer. Cytometry. 33, 414–419. doi: 10.1002/(SICI)1097-0320(19981201)33:4<414::AID-CYTO4>3.0.CO;2-H
- Tobi D., Bahar I. 2005. Structural changes involved in protein binding correlate with intrinsic motions of proteins in the unbound state. Proc. Natl. Acad. Sci. 102, 18908–18913. doi: 10.1073/pnas.0507603102
- Gauer J.W., Knutson K.J., Jaworski S.R., Rice A.M., Rannikko A.M., Lentz B.R., Hinderliter A. 2013. Membrane modulates affinity for calcium ion to create an apparent cooperative binding response by Annexin a5. Biophys. J. 104, 2437–2447. doi: 10.1016/j.bpj.2013.03.060
- Shi J., Gilbert G.E. 2003. Lactadherin inhibits enzyme complexes of blood coagulation by competing for phospholipid-binding sites. Blood. 101, 2628–2636. doi: 10.1182/blood-2002-07-1951
- Carman C.V., Nikova D.N., Sakurai Y., Shi J., Novakovic V.A., Rasmussen J.T., Lam W.A., Gilbert G.E. 2023. Membrane curvature and PS localize coagulation proteins to filopodia and retraction fibers of endothelial cells. Blood Adv. 7, 60–72. doi: 10.1182/bloodadvances.2021006870
- Shi J., Shi Y., Waehrens L.N., Rasmussen J.T., Heegaard C.W., Gilbert G.E. 2006. Lactadherin detects early phosphatidylserine exposure on immortalized leukemia cells undergoing programmed cell death. Cytom. Part J. Int. Soc. Anal. Cytol. 69, 1193–1201. doi: 10.1002/cyto.a.20345
- Shi J., Heegaard C.W., Rasmussen J.T., Gilbert G.E. 2004. Lactadherin binds selectively to membranes containing phosphatidyl-l-serine and increased curvature. Biochim. Biophys. Acta BBA – Biomembr. 1667, 82–90. doi: 10.1016/j.bbamem.2004.09.006
- Miyagi A., Chipot C., Rangl M., Scheuring S. 2016. High-speed atomic force microscopy shows that annexin V stabilizes membranes on the second timescale. Nat. Nanotechnol. 11, 783–790. doi: 10.1038/nnano.2016.89
- Millington‐Burgess S.L., Harper M.T. 2022. Maintaining flippase activity in procoagulant platelets is a novel approach to reducing thrombin generation. J. Thromb. Haemost. 20, 989–995. doi: 10.1111/jth.15641
- Kaiser R., Escaig R., Kranich J., Hoffknecht M.-L., Anjum A., Polewka V., Mader M., Hu W., Belz L., Gold C., Titova A., Lorenz M., Pekayvaz K., Kääb S., Gaertner F., Stark K., Brocker T., Massberg S., Nicolai L. 2022. Procoagulant platelet sentinels prevent inflammatory bleeding through GPIIBIIIA and GPVI. Blood. 140, 121–139. doi: 10.1182/blood.2021014914
- Yeung T., Gilbert G.E., Shi J., Silvius J., Kapus A., Grinstein S. 2008. Membrane phosphatidylserine regulates surface charge and protein localization. Science. 319, 210–213. doi: 10.1126/science.1152066
- Dirvelyte E., Bujanauskiene D., Jankaityte E., Daugelaviciene N., Kisieliute U., Nagula I., Budvytyte R., Neniskyte U. 2023. Genetically encoded phosphatidylserine biosensor for in vitro, ex vivo and in vivo labelling. Cell. Mol. Biol. Lett. 28, 59. doi: 10.1186/s11658-023-00472-7
- Wen Y., Dick R.A., Feigenson G.W., Vogt V.M. 2016. Effects of membrane charge and order on membrane binding of the retroviral structural protein Gag. J. Virol. 90, 9518–9532. doi: 10.1128/JVI.01102-16
- Tremel S., Ohashi Y., Morado D.R., Bertram J., Perisic O., Brandt L.T.L., Von Wrisberg M.-K., Chen Z.A., Maslen S.L., Kovtun O., Skehel M., Rappsilber J., Lang K., Munro S., Briggs J.A.G., Williams R.L. 2021. Structural basis for VPS34 kinase activation by Rab1 and Rab5 on membranes. Nat. Commun. 12, 1564. doi: 10.1038/s41467-021-21695-2
- Mesmin B., Bigay J., Moser von Filseck J., Lacas-Gervais S., Drin G., Antonny B. 2013. A four-step cycle driven by PI(4)P hydrolysis directs sterol/PI(4)P exchange by the ER-Golgi tether OSBP. Cell. 155, 830–843. doi: 10.1016/j.cell.2013.09.056
- Jiménez C., Portela R.A., Mellado M., Rodríguez-Frade J.M., Collard J., Serrano A., Martínez-A C., Avila J., Carrera A.C. 2000. Role of the Pi3k regulatory subunit in the control of actin organization and cell migration. J. Cell Biol. 151, 249–262. doi: 10.1083/jcb.151.2.249
- Gulluni F., Prever L., Li H., Krafcikova P., Corrado I., Lo W.-T., Margaria J.P., Chen A., De Santis M.C., Cnudde S.J., Fogerty J., Yuan A., Massarotti A., Sarijalo N.T., Vadas O., Williams R.L., Thelen M., Powell D.R., Schueler M., Wiesener M.S., Balla T., Baris H.N., Tiosano D., McDermott B.M., Perkins B.D., Ghigo A., Martini M., Haucke V., Boura E., Merlo G.R., Buchner D.A., Hirsch E. 2021. PI(3,4)P2-mediated cytokinetic abscission prevents early senescence and cataract formation. Science. 374, eabk0410. doi: 10.1126/science.abk0410
- Edwards-Hicks J., Apostolova P., Buescher J.M., Maib H., Stanczak M.A., Corrado M., Klein Geltink R.I., Maccari M.E., Villa M., Carrizo G.E., Sanin D.E., Baixauli F., Kelly B., Curtis J.D., Haessler F., Patterson A., Field C.S., Caputa G., Kyle R.L., Soballa M., Cha M., Paul H., Martin J., Grzes K.M., Flachsmann L., Mitterer M., Zhao L., Winkler F., Rafei-Shamsabadi D.A., Meiss F., Bengsch B., Zeiser R., Puleston D.J., O’Sullivan D., Pearce E.J., Pearce E.L. 2023. Phosphoinositide acyl chain saturation drives CD8+ effector T cell signaling and function. Nat. Immunol. 24, 516–530. doi: 10.1038/s41590-023-01419-y
- Dooley H.C., Razi M., Polson H.E.J., Girardin S.E., Wilson M.I., Tooze S.A. 2014. WIPI2 Links LC3 conjugation with PI3P, autophagosome formation, and pathogen clearance by recruiting Atg12–5-16L1. Mol. Cell. 55, 238–252. doi: 10.1016/j.molcel.2014.05.021
- Luo X., Wasilko D.J., Liu Y., Sun J., Wu X., Luo Z.-Q., Mao Y. 2015. Structure of the Legionella virulence factor, SidC reveals a unique PI(4)P-specific binding domain essential for its targeting to the bacterial phagosome. PLOS Pathog. 11, e1004965. doi: 10.1371/journal.ppat.1004965
- Del Campo C.M., Mishra A.K., Wang Y.-H., Roy C.R., Janmey P.A., Lambright D.G. 2014. Structural Basis for PI(4)P-specific membrane recruitment of the Legionella pneumophila effector DrrA/SidM. Structure. 22, 397–408. doi: 10.1016/j.str.2013.12.018
- Roberts M.F., Khan H.M., Goldstein R., Reuter N., Gershenson A. 2018. Search and subvert: Minimalist bacterial phosphatidylinositol-specific phospholipase C Eenzymes. Chem. Rev. 118, 8435–8473. doi: 10.1021/acs.chemrev.8b00208
- Kutateladze T.G., Capelluto D.G.S., Ferguson C.G., Cheever M.L., Kutateladze A.G., Prestwich G.D., Overduin M. 2004. Multivalent mechanism of membrane insertion by the FYVE Domain. J. Biol. Chem. 279, 3050–3057. doi: 10.1074/jbc.M309007200
- Stahelin R.V., Burian A., Bruzik K.S., Murray D., Cho W. 2003. Membrane binding mechanisms of the PX Domains of NADPH Oxidase p40 and p47. J. Biol. Chem. 278, 14469–14479. doi: 10.1074/jbc.M212579200
- Lomize A.L., Pogozheva I.D., Lomize M.A., Mosberg H.I. 2007. The role of hydrophobic interactions in positioning of peripheral proteins in membranes. BMC Struct. Biol. 7, 44. doi: 10.1186/1472-6807-7-44
- Myeong J., Park C.-G., Suh B.-C., Hille B. 2021. Compartmentalization of phosphatidylinositol 4,5-bisphosphate metabolism into plasma membrane liquid-ordered/raft domains. Proc. Natl. Acad. Sci. 118, e2025343118. doi: 10.1073/pnas.2025343118
- Godi A., Campli A.D., Konstantakopoulos A., Tullio G.D., Alessi D.R., Kular G.S., Daniele T., Marra P., Lucocq J.M., Matteis M.A.D. 2004. FAPPs control Golgi-to-cell-surface membrane traffic by binding to ARF and PtdIns(4)P. Nat. Cell Biol. 6, 393–404. doi: 10.1038/ncb1119
- Hammond G.R.V., Schiavo G., Irvine R.F. 2009. Immunocytochemical techniques reveal multiple, distinct cellular pools of PtdIns4 P and PtdIns(4,5) P 2. Biochem. J. 422, 23–35. doi: 10.1042/BJ20090428
- Watt S.A., Kular G., Fleming I.N., Downes C.P., Lucocq J.M. 2002. Subcellular localization of phosphatidylinositol 4,5-bisphosphate using the pleckstrin homology domain of phospholipase C δ1. Biochem. J. 363, 657–666. doi: 10.1042/bj3630657
- Hoshino F., Sakane F. 2020. Polyunsaturated fatty acid-containing phosphatidic acids selectively interact with L-lactate dehydrogenase A and induce its secondary structural change and inactivation. Biochim. Biophys. Acta BBA - Mol. Cell Biol. Lipids. 1865, 158768. doi: 10.1016/j.bbalip.2020.158768
- Zhukovsky M.A., Filograna A., Luini A., Corda D., Valente C. 2019. Phosphatidic acid in membrane rearrangements. FEBS Lett. 593, 2428–2451. doi: 10.1002/1873-3468.13563
- Liu Y., Su Y., Wang X. 2013. Phosphatidic acid-mediated signaling. pp. 159–176. In: Lipid-mediated Protein Signaling, (Capelluto, Daniel G. S. eds.) Springer Netherlands, Dordrecht.
- Touret N., Paroutis P., Terebiznik M., Harrison R.E., Trombetta S., Pypaert M., Chow A., Jiang A., Shaw J., Yip C., Moore H.-P., Van Der Wel N., Houben D., Peters P.J., De Chastellier C., Mellman I., Grinstein S. 2005. Quantitative and Ddynamic assessment of the contribution of the ER to phagosome formation. Cell. 123, 157–170. doi: 10.1016/j.cell.2005.08.018
- Gagnon E., Duclos S., Rondeau C., Chevet E., Cameron P.H., Steele-Mortimer O., Paiement J., Bergeron J.J.M., Desjardins M. 2002. Endoplasmic reticulum-mediated phagocytosis is a mechanism of entry into macrophages. Cell. 110, 119–131. doi: 10.1016/S0092-8674(02)00797-3
- Abe M., Makino A., Hullin-Matsuda F., Kamijo K., Ohno-Iwashita Y., Hanada K., Mizuno H., Miyawaki A., Kobayashi T. 2012. A Role for sphingomyelin-rich lipid domains in the accumulation of phosphatidylinositol-4,5-bisphosphate to the cleavage furrow during cytokinesis. Mol. Cell. Biol. 32, 1396–1407. doi: 10.1128/MCB.06113-11
- Hullin-Matsuda F., Murate M., Kobayashi T. 2018. Protein probes to visualize sphingomyelin and ceramide phosphoethanolamine. Chem. Phys. Lipids. 216, 132–141. doi: 10.1016/j.chemphyslip.2018.09.002
- Spiegel S., Foster D., Kolesnick R. 1996. Signal transduction through lipid second messengers. Curr. Opin. Cell Biol. 8, 159–167. doi: 10.1016/S0955-0674(96)80061-5
- Hannun Y.A. 1996. Functions of ceramide in coordinating cellular responses to stress. Science. 274, 1855–1859. doi: 10.1126/science.274.5294.1855
- Hannun Y. 1995. Ceramide: An intracellular signal for apoptosis. Trends Biochem. Sci. 20, 73–77. doi: 10.1016/S0968-0004(00)88961-6
- Edidin M. 2003. The state of lipid rafts: From model membranes to cells. Annu. Rev. Biophys. Biomol. Struct. 32, 257–283. doi: 10.1146/annurev.biophys.32.110601.142439
- Simons K., Ikonen E. 1997. Functional rafts in cell membranes. Nature. 387, 569–572. doi: 10.1038/42408
- Haan L.D., Hirst T.R. 2004. Cholera toxin: A paradigm for multi-functional engagement of cellular mechanisms (Review). Mol. Membr. Biol. 21, 77–92. doi: 10.1080/09687680410001663267
- Yamaji A., Sekizawa Y., Emoto K., Sakuraba H., Inoue K., Kobayashi H., Umeda M. 1998. Lysenin, a novel sphingomyelin-specific binding protein. J. Biol. Chem. 273, 5300–5306. doi: 10.1074/jbc.273.9.5300
- Ishitsuka R., Yamaji-Hasegawa A., Makino A., Hirabayashi Y., Kobayashi T. 2004. A lipid-specific toxin reveals heterogeneity of sphingomyelin-containing membranes. Biophys. J. 86, 296–307. doi: 10.1016/S0006-3495(04)74105-3
- Bakrač B., Gutiérrez-Aguirre I., Podlesek Z., Sonnen A.F.-P., Gilbert R.J.C., Maček P., Lakey J.H., Anderluh G. 2008. Molecular determinants of sphingomyelin specificity of a eukaryotic pore-forming toxin. J. Biol. Chem. 283, 18665–18677. doi: 10.1074/jbc.M708747200
- Belmonte G., Pederzolli C., Maček P., Menestrina G. 1993. Pore formation by the sea anemone cytolysin equinatoxin II in red blood cells and model lipid membranes. J. Membr. Biol. 131, 11–22. doi: 10.1007/BF02258530
- Kristan K., Podlesek Z., Hojnik V., Gutiérrez-Aguirre I., Gunčar G., Turk D., González-Mañas J.M., Lakey J.H., Maček P., Anderluh G. 2004. Pore formation by Equinatoxin, a eukaryotic pore-forming toxin, requires a flexible N-terminal region and a stable β-sandwich. J. Biol. Chem. 279, 46509–46517. doi: 10.1074/jbc.M406193200
- Skočaj M., Resnik N., Grundner M., Ota K., Rojko N., Hodnik V., Anderluh G., Sobota A., Maček P., Veranič P., Sepčić K. 2014. Tracking cholesterol/sphingomyelin-rich membrane domains with the ostreolysin A-mCherry protein. PLoS ONE. 9, e92783. doi: 10.1371/journal.pone.0092783
- Ikonen E. 2008. Cellular cholesterol trafficking and compartmentalization. Nat. Rev. Mol. Cell Biol. 9, 125–138. doi: 10.1038/nrm2336
- Maxfield F.R., Tabas I. 2005. Role of cholesterol and lipid organization in disease. Nature. 438, 612–621. doi: 10.1038/nature04399
- Yeagle P.L. 1991. Modulation of membrane function by cholesterol. Biochimie. 73, 1303–1310. doi: 10.1016/0300-9084(91)90093-G
- Yeagle P.L. 1985. Cholesterol and the cell membrane. Biochim. Biophys. Acta BBA - Rev. Biomembr. 822, 267–287. doi: 10.1016/0304-4157(85)90011-5
- Demel R.A., Bruckdorfer K.R., Van Deenen L.L.M. 1972. The effect of sterol structure on the permeability of lipomes to glucose, glycerol and Rb+. Biochim. Biophys. Acta BBA - Biomembr. 255, 321–330. doi: 10.1016/0005-2736(72)90031-4
- Issop L., Rone M.B., Papadopoulos V. 2013. Organelle plasticity and interactions in cholesterol transport and steroid biosynthesis. Mol. Cell. Endocrinol. 371, 34–46. doi: 10.1016/j.mce.2012.12.003
- Russell D.W. 2003. The enzymes, regulation, and genetics of bile Acid synthesis. Annu. Rev. Biochem. 72, 137–174. doi: 10.1146/annurev.biochem.72.121801.161712
- Lingwood D., Simons K. 2010. Lipid rafts as a membrane-organizing principle. Science. 327, 46–50. doi: 10.1126/science.1174621
- Fantini J., Barrantes F.J. 2013. How cholesterol interacts with membrane proteins: An exploration of cholesterol-binding sites including CRAC, CARC, and tilted domains. Front. Physiol. 4, doi: 10.3389/fphys.2013.00031
- Levitan I., Singh D.K., Rosenhouse-Dantsker A. 2014. Cholesterol binding to ion channels. Front. Physiol. 5, doi: 10.3389/fphys.2014.00065
- Jiang Q.-X. 2019. Cholesterol-dependent gating effects on ion channels. pp. 167–190. In: Cholesterol Modulation of Protein Function, (Rosenhouse-Dantsker, Avia and Bukiya, Anna N. eds.) Springer International Publishing, Cham.
- Kiriakidi S., Kolocouris A., Liapakis G., Ikram S., Durdagi S., Mavromoustakos T. 2019. Effects of cholesterol on GPCR function: Insights from computational and experimental studies. Adv. Exp. Med. Biol. 1135, 89–103. doi: 10.1007/978-3-030-14265-0_5
- Francis K.R., Ton A.N., Xin Y., O’Halloran P.E., Wassif C.A., Malik N., Williams I.M., Cluzeau C.V., Trivedi N.S., Pavan W.J., Cho W., Westphal H., Porter F.D. 2016. Modeling Smith-Lemli-Opitz syndrome with induced pluripotent stem cells reveals a causal role for Wnt/β-catenin defects in neuronal cholesterol synthesis phenotypes. Nat. Med. 22, 388–396. doi: 10.1038/nm.4067
- Sheng R., Kim H., Lee H., Xin Y., Chen Y., Tian W., Cui Y., Choi J.-C., Doh J., Han J.-K., Cho W. 2014. Cholesterol selectively activates canonical Wnt signalling over non-canonical Wnt signalling. Nat. Commun. 5, 4393. doi: 10.1038/ncomms5393
- Sheng R., Chen Y., Yung Gee H., Stec E., Melowic H.R., Blatner N.R., Tun M.P., Kim Y., Källberg M., Fujiwara T.K., Hye Hong J., Pyo Kim K., Lu H., Kusumi A., Goo Lee M., Cho W. 2012. Cholesterol modulates cell signaling and protein networking by specifically interacting with PDZ domain-containing scaffold proteins. Nat. Commun. 3, 1249. doi: 10.1038/ncomms2221
- Liu S.-L., Sheng R., Jung J.H., Wang L., Stec E., O’Connor M.J., Song S., Bikkavilli R.K., Winn R.A., Lee D., Baek K., Ueda K., Levitan I., Kim K.-P., Cho W. 2017. Orthogonal lipid sensors identify transbilayer asymmetry of plasma membrane cholesterol. Nat. Chem. Biol. 13, 268–274. doi: 10.1038/nchembio.2268
- Orci L., Perrelet A., Montesano R. 1983. Differential filipin labeling of the luminal membranes lining the pancreatic acinus. J. Histochem. Cytochem. 31, 952–955. doi: 10.1177/31.7.6854007
- Gimpl G., Gehrig-Burger K. 2007. Cholesterol reporter molecules. Biosci. Rep. 27, 335–358. doi: 10.1007/s10540-007-9060-1
- Wilhelm L.P., Voilquin L., Kobayashi T., Tomasetto C., Alpy F. 2019. Intracellular and plasma membrane cholesterol labeling and quantification using filipin and GFP-D4. pp. 137–152. In: Intracellular Lipid Transport, (Drin, Guillaume eds.) Springer New York, New York, NY.
- Endapally S., Infante R.E., Radhakrishnan A. 2019. Monitoring and modulating intracellular cholesterol trafficking using ALOD4, a cholesterol-binding protein. pp. 153–163. In: Intracellular Lipid Transport, (Drin, Guillaume eds.) Springer New York, New York, NY.
- Tweten R.K., Hotze E.M., Wade K.R. 2015. The unique molecular choreography of giant pore formation by the cholesterol-dependent cytolysins of cram-positive bacteria. Annu. Rev. Microbiol. 69, 323–340. doi: 10.1146/annurev-micro-091014-104233
- Rossjohn J., Feil S.C., McKinstry W.J., Tweten R.K., Parker M.W. 1997. Structure of a cholesterol-binding, thiol-activated cytolysin and a model of its membrane form. Cell. 89, 685–692. doi: 10.1016/S0092-8674(00)80251-2
- Das A., Goldstein J.L., Anderson D.D., Brown M.S., Radhakrishnan A. 2013. Use of mutant125 I-Perfringolysin O to probe transport and organization of cholesterol in membranes of animal cells. Proc. Natl. Acad. Sci. 110, 10580–10585. doi: 10.1073/pnas.1309273110
- Im Y.J., Raychaudhuri S., Prinz W.A., Hurley J.H. 2005. Structural mechanism for sterol sensing and transport by OSBP-related proteins. Nature. 437, 154–158. doi: 10.1038/nature03923
- De Saint-Jean M., Delfosse V., Douguet D., Chicanne G., Payrastre B., Bourguet W., Antonny B., Drin G. 2011. Osh4p exchanges sterols for phosphatidylinositol 4-phosphate between lipid bilayers. J. Cell Biol. 195, 965–978. doi: 10.1083/jcb.201104062
- Naito T., Ercan B., Krshnan L., Triebl A., Koh D.H.Z., Wei F.-Y., Tomizawa K., Torta F.T., Wenk M.R., Saheki Y. 2019. Movement of accessible plasma membrane cholesterol by the GRAMD1 lipid transfer protein complex. eLife. 8, e51401. doi: 10.7554/eLife.51401
- Ercan B., Naito T., Koh D.H.Z., Dharmawan D., Saheki Y. 2021. Molecular basis of accessible plasma membrane cholesterol recognition by the GRAM domain of GRAMD1b. EMBO J. 40, e106524. doi: 10.15252/embj.2020106524
- Kay J.G., Koivusalo M., Ma X., Wohland T., Grinstein S. 2012. Phosphatidylserine dynamics in cellular membranes. Mol. Biol. Cell. 23, 2198–2212. doi: 10.1091/mbc.e11-11-0936
- Liu S.-L., Wang Z.-G., Hu Y., Xin Y., Singaram I., Gorai S., Zhou X., Shim Y., Min J.-H., Gong L.-W., Hay N., Zhang J., Cho W. 2018. Quantitative lipid imaging reveals a new signaling function of phosphatidylinositol-3,4-bisphophate: Isoform- and site-specific activation of Akt. Mol. Cell. 71, 1092-1104.e5. doi: 10.1016/j.molcel.2018.07.035
- Quijano-Rubio A., Yeh H.-W., Park J., Lee H., Langan R.A., Boyken S.E., Lajoie M.J., Cao L., Chow C.M., Miranda M.C., Wi J., Hong H.J., Stewart L., Oh B.-H., Baker D. 2021. De novo design of modular and tunable protein biosensors. Nature. 591, 482–487. doi: 10.1038/s41586-021-03258-z
- Yang J.-M., Chi W.-Y., Liang J., Takayanagi S., Iglesias P.A., Huang C.-H. 2021. Deciphering cell signaling networks with massively multiplexed biosensor barcoding. Cell. 184, 6193-6206.e14. doi: 10.1016/j.cell.2021.11.005
Supplementary files
