Recombinant Protein Biosensors of Cell Membrane Lipids

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Specific patterns of lipid distribution in cell membranes determine their structural and signaling roles, and ensure the integrity and functionality of the plasma membrane and cell organelles. Recent advances in the development of recombinant lipid biosensors and imaging techniques allow direct observation of the distribution, movement, and dynamics of lipids within cells, significantly expanding the understanding of lipid functions and their involvement in cellular and subcellular processes. In this review, we summarize the data related to the development and application of recombinant protein sensors for various lipids in cell membranes.

Full Text

Restricted Access

About the authors

E. M. Koltsova

Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology; Center of Theoretical Problems of Physico-chemical Pharmacology of the Russian Academy of Sciences

Author for correspondence.
Email: ekaterina_koltsova@bk.ru
Russian Federation, Moscow, 117997; Moscow, 109029

N. A. Kolchin

Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology; Center of Theoretical Problems of Physico-chemical Pharmacology of the Russian Academy of Sciences

Email: ekaterina_koltsova@bk.ru
Russian Federation, Moscow, 117997; Moscow, 109029

E. I. Nikolaeva

Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology; Center of Theoretical Problems of Physico-chemical Pharmacology of the Russian Academy of Sciences

Email: ekaterina_koltsova@bk.ru
Russian Federation, Moscow, 117997; Moscow, 109029

K. R. Butov

Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology; Pirogov Russian National Research Medical University

Email: ekaterina_koltsova@bk.ru
Russian Federation, Moscow, 117997; Moscow, 117513

References

  1. Van Meer G., Lisman Q. 2002. Sphingolipid transport: Rafts and translocators. J. Biol. Chem. 277, 25855–25858. doi: 10.1074/jbc.R200010200
  2. Marsh D. 2009. Cholesterol-induced fluid membrane domains: A compendium of lipid-raft ternary phase diagrams. Biochim. Biophys. Acta BBA - Biomembr. 1788, 2114–2123. doi: 10.1016/j.bbamem.2009.08.004
  3. London E. 2005. How principles of domain formation in model membranes may explain ambiguities concerning lipid raft formation in cells. Biochim. Biophys. Acta BBA - Mol. Cell Res. 1746, 203–220. doi: 10.1016/j.bbamcr.2005.09.002
  4. Van Meer G., Voelker D.R., Feigenson G.W. 2008. Membrane lipids: Where they are and how they behave. Nat. Rev. Mol. Cell Biol. 9, 112–124. doi: 10.1038/nrm2330
  5. Osawa T., Fujikawa K., Shimamoto K. 2024. Structures, functions, and syntheses of glycero-glycophospholipids. Front. Chem. 12, 1353688. doi: 10.3389/fchem.2024.1353688
  6. Korbecki J., Bosiacki M., Kupnicka P., Barczak K., Ziętek P., Chlubek D., Baranowska-Bosiacka I. 2024. Biochemistry and diseases related to the interconversion of phosphatidylcholine, phosphatidylethanolamine, and phosphatidylserine. Int. J. Mol. Sci. 25, 10745. doi: 10.3390/ijms251910745
  7. Chen L., Chen X.-W., Huang X., Song B.-L., Wang Y., Wang Y. 2019. Regulation of glucose and lipid metabolism in health and disease. Sci. China Life Sci. 62, 1420–1458. doi: 10.1007/s11427-019-1563-3
  8. Burke J.E. 2018. Structural basis for regulation of phosphoinositide kinases and their involvement in human disease. Mol. Cell. 71, 653–673. doi: 10.1016/j.molcel.2018.08.005
  9. Billcliff P.G., Lowe M. 2014. Inositol lipid phosphatases in membrane trafficking and human disease. Biochem. J. 461, 159–175. doi: 10.1042/BJ20140361
  10. Maekawa M., Fairn G.D. 2014. Molecular probes to visualize the location, organization and dynamics of lipids. J. Cell Sci. jcs.150524. doi: 10.1242/jcs.150524
  11. Eurtivong C., Leung E., Sharma N., Leung I.K.H., Reynisson J. 2023. Phosphatidylcholine-specific phospholipase C as a promising drug target. Molecules. 28, 5637. doi: 10.3390/molecules28155637
  12. Exton J.H. 1994. Phosphatidylcholine breakdown and signal transduction. Biochim. Biophys. Acta BBA – Lipids Lipid Metab. 1212, 26–42. doi: 10.1016/0005-2760(94)90186-4
  13. Kennedy E.P., Weiss S.B. 1956. The function of cytidine coenzymes in the biosynthesis of phospholipids. J. Biol. Chem. 222, 193–214. doi: 10.1016/S0021-9258(19)50785-2
  14. Vance D.E., Ridgway N.D. 1988. The methylation of phosphatidylethanolamine. Prog. Lipid Res. 27, 61–79. doi: 10.1016/0163-7827(88)90005-7
  15. Eichner N.Z.M., Gilbertson N.M., Musante L., La Salvia S., Weltman A., Erdbrügger U., Malin S.K. 2019. An oral glucose load decreases postprandial extracellular vesicles in obese adults with and without prediabetes. Nutrients. 11, 580. doi: 10.3390/nu11030580
  16. Jimenez J.J., Jy W., Mauro L.M., Soderland C., Horstman L.L., Ahn Y.S. 2003. Endothelial cells release phenotypically and quantitatively distinct microparticles in activation and apoptosis. Thromb. Res. 109, 175–180. doi: 10.1016/S0049-3848(03)00064-1
  17. Enjeti A., Lincz L., Seldon M. 2007. Detection and measurement of microparticles: An evolving research tool for vascular biology. Semin. Thromb. Hemost. 33, 771–779. doi: 10.1055/s-2007-1000369
  18. Connor D.E., Exner T., Ma D.D.F., Joseph J.E. 2010. The majority of circulating platelet-derived microparticles fail to bind annexin V, lack phospholipid-dependent procoagulant activity and demonstrate greater expression of glycoprotein Ib. Thromb. Haemost. 103, 1044–1052. doi: 10.1160/TH09-09-0644
  19. Key N.S. 2010. Analysis of tissue factor positive microparticles. Thromb. Res. 125, S42–S45. doi: 10.1016/j.thromres.2010.01.035
  20. Ridger V.C., Boulanger C.M., Angelillo-Scherrer A., Badimon L., Blanc-Brude O., Bochaton-Piallat M.-L., Boilard E., Buzas E.I., Caporali A., Dignat-George F., Evans P.C., Lacroix R., Lutgens E., Ketelhuth D.F.J., Nieuwland R., Toti F., Tuñon J., Weber C., Hoefer I.E., Lip G.Y.H., Werner N., Shantsila E., Ten Cate H., Thomas M., Harrison P. 2017. Microvesicles in vascular homeostasis and diseases: Position paper of the European society of cardiology (ESC) working group on atherosclerosis and vascular biology. Thromb. Haemost. 117, 1296–1316. doi: 10.1160/TH16-12-0943
  21. An S.J., Stagi M., Gould T.J., Wu Y., Mlodzianoski M., Rivera-Molina F., Toomre D., Strittmatter S.M., De Camilli P., Bewersdorf J., Zenisek D. 2022. Multimodal imaging of synaptic vesicles with a single probe. Cell Rep. Methods. 2, 100199. doi: 10.1016/j.crmeth.2022.100199
  22. Hirano Y., Gao Y.-G., Stephenson D.J., Vu N.T., Malinina L., Simanshu D.K., Chalfant C.E., Patel D.J., Brown R.E. 2019. Structural basis of phosphatidylcholine recognition by the C2–domain of cytosolic phospholipase A2α. eLife. 8, e44760. doi: 10.7554/eLife.44760
  23. Ward K.E., Ropa J.P., Adu-Gyamfi E., Stahelin R.V. 2012. C2 domain membrane penetration by group IVA cytosolic phospholipase A2 induces membrane curvature changes. J. Lipid Res. 53, 2656–2666. doi: 10.1194/jlr.M030718
  24. Perisic O., Paterson H.F., Mosedale G., Lara-González S., Williams R.L. 1999. Mapping the phospholipid-binding surface and translocation determinants of the C2 domain from cytosolic phospholipase A2. J. Biol. Chem. 274, 14979–14987. doi: 10.1074/jbc.274.21.14979
  25. Rand M.L., Wang H., Pluthero F.G., Stafford A.R., Ni R., Vaezzadeh N., Allison A.C., Kahr W.H.A., Weitz J.I., Gross P.L. 2012. Diannexin, an annexin A5 homodimer, binds phosphatidylserine with high affinity and is a potent inhibitor of platelet‐mediated events during thrombus formation. J. Thromb. Haemost. 10, 1109–1119. doi: 10.1111/j.1538-7836.2012.04716.x
  26. Shao C., Novakovic V.A., Head J.F., Seaton B.A., Gilbert G.E. 2008. Crystal structure of lactadherin C2 domain at 1.7Å resolution with mutational and computational analyses of its membrane-binding motif. J. Biol. Chem. 283, 7230–7241. doi: 10.1074/jbc.M705195200
  27. Ye H., Li B., Subramanian V., Choi B.-H., Liang Y., Harikishore A., Chakraborty G., Baek K., Yoon H.S. 2013. NMR solution structure of C2 domain of MFG-E8 and insights into its molecular recognition with phosphatidylserine. Biochim. Biophys. Acta BBA – Biomembr. 1828, 1083–1093. doi: 10.1016/j.bbamem.2012.12.009
  28. Uchida Y., Hasegawa J., Chinnapen D., Inoue T., Okazaki S., Kato R., Wakatsuki S., Misaki R., Koike M., Uchiyama Y., Iemura S., Natsume T., Kuwahara R., Nakagawa T., Nishikawa K., Mukai K., Miyoshi E., Taniguchi N., Sheff D., Lencer W.I., Taguchi T., Arai H. 2011. Intracellular phosphatidylserine is essential for retrograde membrane traffic through endosomes. Proc. Natl. Acad. Sci. 108, 15846–15851. doi: 10.1073/pnas.1109101108
  29. Nakai W., Yoshida T., Diez D., Miyatake Y., Nishibu T., Imawaka N., Naruse K., Sadamura Y., Hanayama R. 2016. A novel affinity-based method for the isolation of highly purified extracellular vesicles. Sci. Rep. 6, 33935. doi: 10.1038/srep33935
  30. Miyanishi M., Tada K., Koike M., Uchiyama Y., Kitamura T., Nagata S. 2007. Identification of Tim4 as a phosphatidylserine receptor. Nature. 450, 435–439. doi: 10.1038/nature06307
  31. Maib H., Adarska P., Hunton R., Vines J.H., Strutt D., Bottanelli F., Murray D.H. 2024. Recombinant biosensors for multiplex and super-resolution imaging of phosphoinositides. J. Cell Biol. 223, e202310095. doi: 10.1083/jcb.202310095
  32. Pemberton J.G., Kim Y.J., Humpolickova J., Eisenreichova A., Sengupta N., Toth D.J., Boura E., Balla T. 2020. Defining the subcellular distribution and metabolic channeling of phosphatidylinositol. J. Cell Biol. 219, doi: 10.1083/jcb.201906130
  33. Sankaran V.G., Klein D.E., Sachdeva M.M., Lemmon M.A. 2001. High-affinity binding of a FYVE domain to phosphatidylinositol 3-phosphate requires intact phospholipid but not FYVE Ddomain oligomerization. Biochemistry. 40, 8581–8587. doi: 10.1021/bi010425d
  34. Burd C.G., Emr S.D. 1998. Phosphatidylinositol(3)-phosphate signaling mediated by specific binding to RING FYVE domains. Mol. Cell. 2, 157–162. doi: 10.1016/S1097-2765(00)80125-2
  35. Hammond G.R.V., Balla T. 2015. Polyphosphoinositide binding domains: Key to inositol lipid biology. Biochim. Biophys. Acta BBA - Mol. Cell Biol. Lipids. 1851, 746–758. doi: 10.1016/j.bbalip.2015.02.013
  36. Gaullier J.-M., Rønning E., Gillooly D.J., Stenmark H. 2000. Interaction of the EEA1 FYVE Finger with phosphatidylinositol 3-phosphate and early endosomes. J. Biol. Chem. 275, 24595–24600. doi: 10.1074/jbc.M906554199
  37. Bravo J., Karathanassis D., Pacold C.M., Pacold M.E., Ellson C.D., Anderson K.E., Butler P.J.G., Lavenir I., Perisic O., Hawkins P.T., Stephens L., Williams R.L. 2001. The crystal structure of the PX domain from p40phox bound to phosphatidylinositol 3-phosphate. Mol. Cell. 8, 829–839. doi: 10.1016/S1097-2765(01)00372-0
  38. Dolinsky S., Haneburger I., Cichy A., Hannemann M., Itzen A., Hilbi H. 2014. The Legionella longbeachae Icm/dot substrate SidC selectively binds phosphatidylinositol 4-phosphate with nanomolar affinity and promotes pathogen vacuole-endoplasmic reticulum interactions. Infect. Immun. 82, 4021–4033. doi: 10.1128/IAI.01685-14
  39. He J., Scott J.L., Heroux A., Roy S., Lenoir M., Overduin M., Stahelin R.V., Kutateladze T.G. 2011. Molecular basis of phosphatidylinositol 4-phosphate and ARF1 GTPase recognition by the FAPP1 pleckstrin homology (PH) domain. J. Biol. Chem. 286, 18650–18657. doi: 10.1074/jbc.M111.233015
  40. Brombacher E., Urwyler S., Ragaz C., Weber S.S., Kami K., Overduin M., Hilbi H. 2009. Rab1 guanine nucleotide exchange factor SidM is a major phosphatidylinositol 4-phosphate-binding effector protein of Legionella pneumophila. J. Biol. Chem. 284, 4846–4856. doi: 10.1074/jbc.M807505200
  41. Gozani O., Karuman P., Jones D.R., Ivanov D., Cha J., Lugovskoy A.A., Baird C.L., Zhu H., Field S.J., Lessnick S.L., Villasenor J., Mehrotra B., Chen J., Rao V.R., Brugge J.S., Ferguson C.G., Payrastre B., Myszka D.G., Cantley L.C., Wagner G., Divecha N., Prestwich G.D., Yuan J. 2003. The PHD finger of the chromatin-associated protein ING2 functions as a nuclear phosphoinositide receptor. Cell. 114, 99–111. doi: 10.1016/S0092-8674(03)00480-X
  42. Manna D., Albanese A., Park W.S., Cho W. 2007. Mechanistic basis of differential cellular responses of phosphatidylinositol 3,4-bisphosphate- and phosphatidylinositol 3,4,5-trisphosphate-binding pleckstrin homology domains. J. Biol. Chem. 282, 32093–32105. doi: 10.1074/jbc.M703517200
  43. Goulden B.D., Pacheco J., Dull A., Zewe J.P., Deiters A., Hammond G.R.V. 2019. A high-avidity biosensor reveals plasma membrane PI(3,4)P2 is predominantly a class I PI3K signaling product. J. Cell Biol. 218, 1066–1079. doi: 10.1083/jcb.201809026
  44. Vines J.H., Maib H., Buckley C.M., Gueho A., Zhu Z., Soldati T., Murray D.H., King J.S. 2023. A PI(3,5)P2 reporter reveals PIKfyve activity and dynamics on macropinosomes and phagosomes. J. Cell Biol. 222, e202209077. doi: 10.1083/jcb.202209077
  45. Klein P., Mattoon D., Lemmon M.A., Schlessinger J. 2004. A structure-based model for ligand binding and dimerization of EGF receptors. Proc. Natl. Acad. Sci. 101, 929–934. doi: 10.1073/pnas.0307285101
  46. Garcia P., Gupta R., Shah S., Morris A.J., Rudge S.A., Scarlata S., Petrova V., McLaughlin S., Rebecchi M.J. 1995. The pleckstrin homology domain of phospholipase C-.delta.1 binds with high affinity to phosphatidylinositol 4,5-bisphosphate in bilayer membranes. Biochemistry. 34, 16228–16234. doi: 10.1021/bi00049a039
  47. Fukuda M., Kojima T., Kabayama H., Mikoshiba K. 1996. Mutation of the Pleckstrin Homology domain of bruton’s tyrosine kinase in immunodeficiency impaired inositol 1,3,4,5-tetrakisphosphate binding capacity. J. Biol. Chem. 271, 30303–30306. doi: 10.1074/jbc.271.48.30303
  48. Kassas N., Tanguy E., Thahouly T., Fouillen L., Heintz D., Chasserot-Golaz S., Bader M.-F., Grant N.J., Vitale N. 2017. Comparative characterization of phosphatidic acid sensors and their localization during frustrated phagocytosis. J. Biol. Chem. 292, 4266–4279. doi: 10.1074/jbc.M116.742346
  49. Makino A., Abe M., Murate M., Inaba T., Yilmaz N., Hullin‐Matsuda F., Kishimoto T., Schieber N.L., Taguchi T., Arai H., Anderluh G., Parton R.G., Kobayashi T. 2015. Visualization of the heterogeneous membrane distribution of sphingomyelin associated with cytokinesis, cell polarity, and sphingolipidosis. FASEB J. 29, 477–493. doi: 10.1096/fj.13-247585
  50. Kiyokawa E., Baba T., Otsuka N., Makino A., Ohno S., Kobayashi T. 2005. Spatial and functionalheterogeneity of sphingolipid-rich membrane domains. J. Biol. Chem. 280, 24072–24084. doi: 10.1074/jbc.M502244200
  51. Hong Q., Gutiérrez-Aguirre I., Barlič A., Malovrh P., Kristan K., Podlesek Z., Maček P., Turk D., González-Mañas J.M., Lakey J.H., Anderluh G. 2002. Two-step membrane binding by Equinatoxin II, a pore-forming toxin from the sea anemone, involves an exposed aromatic cluster and a flexible helix. J. Biol. Chem. 277, 41916–41924. doi: 10.1074/jbc.M204625200
  52. Yokoyama J., Matsuda T., Koshiba S., Tochio N., Kigawa T. 2011. A practical method for cell-free protein synthesis to avoid stable isotope scrambling and dilution. Anal. Biochem. 411, 223–229. doi: 10.1016/j.ab.2011.01.017.
  53. Makino A., Abe M., Ishitsuka R., Murate M., Kishimoto T., Sakai S., Hullin‐Matsuda F., Shimada Y., Inaba T., Miyatake H., Tanaka H., Kurahashi A., Pack C., S. Kasai R., Kubo S., L. Schieber N., Dohmae N., Tochio N., Hagiwara K., Sasaki Y., Aida Y., Fujimori F., Kigawa T., Nishibori K., Parton R.G., Kusumi A., Sako Y., Anderluh G., Yamashita M., Kobayashi T., Greimel P., Kobayashi T. 2017. A novel sphingomyelin/cholesterol domain‐specific probe reveals the dynamics of the membrane domains during virus release and in Niemann‐Pick type C. FASEB J. 31, 1301–1322. doi: 10.1096/fj.201500075R
  54. Bhat H.B., Ishitsuka R., Inaba T., Murate M., Abe M., Makino A., Kohyama-Koganeya A., Nagao K., Kurahashi A., Kishimoto T., Tahara M., Yamano A., Nagamune K., Hirabayashi Y., Juni N., Umeda M., Fujimori F., Nishibori K., Yamaji-Hasegawa A., Greimel P., Kobayashi T. 2015. Evaluation of aegerolysins as novel tools to detect and visualize ceramide phosphoethanolamine, a major sphingolipid in invertebrates. FASEB J. 29, 3920–3934. doi: 10.1096/fj.15-272112
  55. Shimada Y., Maruya M., Iwashita S., Ohno‐Iwashita Y. 2002. The C‐terminal domain of perfringolysin O is an essential cholesterol‐binding unit targeting to cholesterol‐rich microdomains. Eur. J. Biochem. 269, 6195–6203. doi: 10.1046/j.1432-1033.2002.03338.x
  56. Buwaneka P., Ralko A., Liu S.-L., Cho W. 2021. Evaluation of the available cholesterol concentration in the inner leaflet of the plasma membrane of mammalian cells. J. Lipid Res. 62, 100084. doi: 10.1016/j.jlr.2021.100084
  57. Cocklin S., Jost M., Robertson N.M., Weeks S.D., Weber H., Young E., Seal S., Zhang C., Mosser E., Loll P.J., Saunders A.J., Rest R.F., Chaiken I.M. 2006. Real‐time monitoring of the membrane‐binding and insertion properties of the cholesterol‐dependent cytolysin anthrolysin O from Bacillus anthracis. J. Mol. Recognit. 19, 354–362. doi: 10.1002/jmr.784
  58. Yamaji-Hasegawa A., Murate M., Inaba T., Dohmae N., Sato M., Fujimori F., Sako Y., Greimel P., Kobayashi T. 2022. A novel sterol-binding protein reveals heterogeneous cholesterol distribution in neurite outgrowth and in late endosomes/lysosomes. Cell. Mol. Life Sci. 79, 324. doi: 10.1007/s00018-022-04339-6
  59. Koh D.H.Z., Naito T., Na M., Yeap Y.J., Rozario P., Zhong F.L., Lim K.-L., Saheki Y. 2023. Visualization of accessible cholesterol using a GRAM domain-based biosensor. Nat. Commun. 14, 6773. doi: 10.1038/s41467-023-42498-7
  60. Wang S., Zhang S., Liou L.-C., Ren Q., Zhang Z., Caldwell G.A., Caldwell K.A., Witt S.N. 2014. Phosphatidylethanolamine deficiency disrupts α-synuclein homeostasis in yeast and worm models of Parkinson disease. Proc. Natl. Acad. Sci. 111, doi: 10.1073/pnas.1411694111
  61. Vance J.E. 2015. Phospholipid synthesis and transport in mammalian cells. Traffic. 16, 1–18. doi: 10.1111/tra.12230
  62. Bogdanov M., Dowhan W., Vitrac H. 2014. Lipids and topological rules governing membrane protein assembly. Biochim. Biophys. Acta BBA - Mol. Cell Res. 1843, 1475–1488. doi: 10.1016/j.bbamcr.2013.12.007
  63. Tatsuta T., Scharwey M., Langer T. 2014. Mitochondrial lipid trafficking. Trends Cell Biol. 24, 44–52. doi: 10.1016/j.tcb.2013.07.011
  64. Siegel D.P., Epand R.M. 2000. Effect of influenza hemagglutinin fusion peptide on lamellar/inverted phase transitions in dipalmitoleoylphosphatidylethanolamine: implications for membrane fusion mechanisms. Biochim. Biophys. Acta BBA - Biomembr. 1468, 87–98. doi: 10.1016/S0005-2736(00)00246-7
  65. Yang L., Ding L., Huang H.W. 2003. New Phases of phospholipids and implications to the membrane fusion problem. Biochemistry. 42, 6631–6635. doi: 10.1021/bi0344836
  66. Calzada E., Avery E., Sam P.N., Modak A., Wang C., McCaffery J.M., Han X., Alder N.N., Claypool S.M. 2019. Phosphatidylethanolamine made in the inner mitochondrial membrane is essential for yeast cytochrome bc1 complex function. Nat. Commun. 10, 1432. doi: 10.1038/s41467-019-09425-1
  67. Shinzawa-Itoh K., Aoyama H., Muramoto K., Terada H., Kurauchi T., Tadehara Y., Yamasaki A., Sugimura T., Kurono S., Tsujimoto K., Mizushima T., Yamashita E., Tsukihara T., Yoshikawa S. 2007. Structures and physiological roles of 13 integral lipids of bovine heart cytochrome c oxidase. EMBO J. 26, 1713–1725. doi: 10.1038/sj.emboj.7601618
  68. Ichimura Y., Kirisako T., Takao T., Satomi Y., Shimonishi Y., Ishihara N., Mizushima N., Tanida I., Kominami E., Ohsumi M., Noda T., Ohsumi Y. 2000. A ubiquitin-like system mediates protein lipidation. Nature. 408, 488–492. doi: 10.1038/35044114
  69. Kagan V.E., Mao G., Qu F., Angeli J.P.F., Doll S., Croix C.S., Dar H.H., Liu B., Tyurin V.A., Ritov V.B., Kapralov A.A., Amoscato A.A., Jiang J., Anthonymuthu T., Mohammadyani D., Yang Q., Proneth B., Klein-Seetharaman J., Watkins S., Bahar I., Greenberger J., Mallampalli R.K., Stockwell B.R., Tyurina Y.Y., Conrad M., Bayır H. 2017. Oxidized arachidonic and adrenic PEs navigate cells to ferroptosis. Nat. Chem. Biol. 13, 81–90. doi: 10.1038/nchembio.2238
  70. Deleault N.R., Piro J.R., Walsh D.J., Wang F., Ma J., Geoghegan J.C., Supattapone S. 2012. Isolation of phosphatidylethanolamine as a solitary cofactor for prion formation in the absence of nucleic acids. Proc. Natl. Acad. Sci. 109, 8546–8551. doi: 10.1073/pnas.1204498109
  71. Banfield M.J., Barker J.J., Perry A.C., Brady R.L. 1998. Function from structure? The crystal structure of human phosphatidylethanolamine-binding protein suggests a role in membrane signal transduction. Structure. 6, 1245–1254. doi: 10.1016/S0969-2126(98)00125-7
  72. Bucquoy S., Jollès P., Schoentgen F. 1994. Relationships between molecular interactions (nucleotides, lipids and proteins) and structural features of the bovine brain 21‐kDa protein. Eur. J. Biochem. 225, 1203–1210. doi: 10.1111/j.1432-1033.1994.1203b.x
  73. Serre L., Vallée B., Bureaud N., Schoentgen F., Zelwer C. 1998. Crystal structure of the phosphatidylethanolamine-binding protein from bovine brain: A novel structural class of phospholipid-binding proteins. Structure. 6, 1255–1265. doi: 10.1016/S0969-2126(98)00126-9
  74. Vallée B.S., Tauc P., Brochon J., Maget‐Dana R., Lelièvre D., Metz‐Boutigue M., Bureaud N., Schoentgen F. 2001. Behaviour of bovine phosphatidylethanolamine‐binding protein with model membranes: Evidence of affinity for negatively charged membranes. Eur. J. Biochem. 268, 5831–5841. doi: 10.1046/j.0014-2956.2001.02528.x
  75. Bernier I., Tresca J.-P., Jollès P. 1986. Ligand-binding studies with a 23 kDa protein purified from bovine brain cytosol. Biochim. Biophys. Acta BBA – Protein Struct. Mol. Enzymol. 871, 19–23. doi: 10.1016/0167-4838(86)90128-7
  76. Hou S., Johnson S.E., Zhao M. 2015. A one‐step staining probe for phosphatidylethanolamine. ChemBioChem. 16, 1955–1960. doi: 10.1002/cbic.201500127
  77. Machaidze G., Ziegler A., Seelig J. 2002. Specific binding of Ro 09-0198 (Cinnamycin) to phosphatidylethanolamine: A thermodynamic analysis. Biochemistry. 41, 1965–1971. doi: 10.1021/bi015841c
  78. Hayashi F., Nagashima K., Terui Y., Kawamura Y., Matsumoto K., Itazaki H. 1990. The structure of PA48009: The revised structure of duramycin. J. Antibiot. (Tokyo). 43, 1421–1430. doi: 10.7164/antibiotics.43.1421
  79. Navarro J., Chabot J., Sherrill K., Aneja R., Zahler S.A., Racker E. 1985. Interaction of duramycin with artificial and natural membranes. Biochemistry. 24, 4645–4650. doi: 10.1021/bi00338a025
  80. Makino A., Baba T., Fujimoto K., Iwamoto K., Yano Y., Terada N., Ohno S., Sato S.B., Ohta A., Umeda M., Matsuzaki K., Kobayashi T. 2003. Cinnamycin (Ro 09-0198) promotes cell binding and toxicity by inducing transbilayer lipid movement. J. Biol. Chem. 278, 3204–3209. doi: 10.1074/jbc.M210347200
  81. Kay J.G., Fairn G.D. 2019. Distribution, dynamics and functional roles of phosphatidylserine within the cell. Cell Commun. Signal. 17, 126. doi: 10.1186/s12964-019-0438-z
  82. Vance J.E. 2018. Historical perspective: Phosphatidylserine and phosphatidylethanolamine from the 1800s to the present. J. Lipid Res. 59, 923–944. doi: 10.1194/jlr.R084004
  83. Zwaal R.F.A., Comfurius P., Bevers E.M. 1998. Lipid–protein interactions in blood coagulation. Biochim. Biophys. Acta BBA – Rev. Biomembr. 1376, 433–453. doi: 10.1016/S0304-4157(98)00018-5
  84. Leventis P.A., Grinstein S. 2010. The Distribution and function of phosphatidylserine in cellular membranes. Annu. Rev. Biophys. 39, 407–427. doi: 10.1146/annurev.biophys.093008.131234
  85. Fadok V.A., De Cathelineau A., Daleke D.L., Henson P.M., Bratton D.L. 2001. Loss of phospholipid asymmetry and surface exposure of phosphatidylserine is required for phagocytosis of apoptotic cells by macrophages and fibroblasts. J. Biol. Chem. 276, 1071–1077. doi: 10.1074/jbc.M003649200
  86. Daleke D.L. 2007. Phospholipid flippases. J. Biol. Chem. 282, 821–825. doi: 10.1074/jbc.R600035200
  87. Cho W., Stahelin R. 2006. Membrane binding and subcellular targeting of C2 domains. Biochim. Biophys. Acta BBA - Mol. Cell Biol. Lipids. 1761, 838–849. doi: 10.1016/j.bbalip.2006.06.014
  88. Arikketh D., Nelson R., Vance J.E. 2008. Defining the importance of phosphatidylserine synthase-1 (PSS1). J. Biol. Chem. 283, 12888–12897. doi: 10.1074/jbc.M800714200
  89. Logue S.E., Elgendy M., Martin S.J. 2009. Expression, purification and use of recombinant annexin V for the detection of apoptotic cells. Nat. Protoc. 4, 1383–1395. doi: 10.1038/nprot.2009.143
  90. Yen T.-C., Wey S.-P., Liao C.-H., Yeh C.-H., Shen D.-W., Achilefu S., Wun T.-C. 2010. Measurement of the binding parameters of annexin derivative–erythrocyte membrane interactions. Anal. Biochem. 406, 70–79. doi: 10.1016/j.ab.2010.06.048
  91. Thiagarajan P., Tait J.F. 1990. Binding of annexin V/placental anticoagulant protein I to platelets. Evidence for phosphatidylserine exposure in the procoagulant response of activated platelets. J. Biol. Chem. 265, 17420–17423. doi: 10.1016/S0021-9258(18)38177-8
  92. Gerke V., Gavins F.N.E., Geisow M., Grewal T., Jaiswal J.K., Nylandsted J., Rescher U. 2024. Annexins—a family of proteins with distinctive tastes for cell signaling and membrane dynamics. Nat. Commun. 15, 1574. doi: 10.1038/s41467-024-45954-0
  93. Swairjo M.A., Concha N.O., Kaetzel M.A., Dedman J.R., Seaton B.A. 1995. Ca2+-bridging mechanism and phospholipid head group recognition in the membrane-binding protein annexin V. Nat. Struct. Mol. Biol. 2, 968–974. doi: 10.1038/nsb1195-968
  94. Lemmon M.A. 2008. Membrane recognition by phospholipid-binding domains. Nat. Rev. Mol. Cell Biol. 9, 99–111. doi: 10.1038/nrm2328
  95. Tietjen G.T., Gong Z., Chen C.-H., Vargas E., Crooks J.E., Cao K.D., Heffern C.T.R., Henderson J.M., Meron M., Lin B., Roux B., Schlossman M.L., Steck T.L., Lee K.Y.C., Adams E.J. 2014. Molecular mechanism for differential recognition of membrane phosphatidylserine by the immune regulatory receptor Tim4. Proc. Natl. Acad. Sci. 111, doi: 10.1073/pnas.1320174111
  96. Okazaki S., Kato R., Uchida Y., Taguchi T., Arai H., Wakatsuki S. 2012. Structural basis of the strict phospholipid binding specificity of the pleckstrin homology domain of human evectin-2. Acta Crystallogr. D Biol. Crystallogr. 68, 117–123. doi: 10.1107/S0907444911051626
  97. Lin Y.-C., Chipot C., Scheuring S. 2020. Annexin-V stabilizes membrane defects by inducing lipid phase transition. Nat. Commun. 11, 230. doi: 10.1038/s41467-019-14045-w
  98. Stuart M.C.A., Reutelingsperger C.P.M., Frederik P.M. 1998. Binding of annexin V to bilayers with various phospholipid compositions using glass beads in a flow cytometer. Cytometry. 33, 414–419. doi: 10.1002/(SICI)1097-0320(19981201)33:4<414::AID-CYTO4>3.0.CO;2-H
  99. Tobi D., Bahar I. 2005. Structural changes involved in protein binding correlate with intrinsic motions of proteins in the unbound state. Proc. Natl. Acad. Sci. 102, 18908–18913. doi: 10.1073/pnas.0507603102
  100. Gauer J.W., Knutson K.J., Jaworski S.R., Rice A.M., Rannikko A.M., Lentz B.R., Hinderliter A. 2013. Membrane modulates affinity for calcium ion to create an apparent cooperative binding response by Annexin a5. Biophys. J. 104, 2437–2447. doi: 10.1016/j.bpj.2013.03.060
  101. Shi J., Gilbert G.E. 2003. Lactadherin inhibits enzyme complexes of blood coagulation by competing for phospholipid-binding sites. Blood. 101, 2628–2636. doi: 10.1182/blood-2002-07-1951
  102. Carman C.V., Nikova D.N., Sakurai Y., Shi J., Novakovic V.A., Rasmussen J.T., Lam W.A., Gilbert G.E. 2023. Membrane curvature and PS localize coagulation proteins to filopodia and retraction fibers of endothelial cells. Blood Adv. 7, 60–72. doi: 10.1182/bloodadvances.2021006870
  103. Shi J., Shi Y., Waehrens L.N., Rasmussen J.T., Heegaard C.W., Gilbert G.E. 2006. Lactadherin detects early phosphatidylserine exposure on immortalized leukemia cells undergoing programmed cell death. Cytom. Part J. Int. Soc. Anal. Cytol. 69, 1193–1201. doi: 10.1002/cyto.a.20345
  104. Shi J., Heegaard C.W., Rasmussen J.T., Gilbert G.E. 2004. Lactadherin binds selectively to membranes containing phosphatidyl-l-serine and increased curvature. Biochim. Biophys. Acta BBA – Biomembr. 1667, 82–90. doi: 10.1016/j.bbamem.2004.09.006
  105. Miyagi A., Chipot C., Rangl M., Scheuring S. 2016. High-speed atomic force microscopy shows that annexin V stabilizes membranes on the second timescale. Nat. Nanotechnol. 11, 783–790. doi: 10.1038/nnano.2016.89
  106. Millington‐Burgess S.L., Harper M.T. 2022. Maintaining flippase activity in procoagulant platelets is a novel approach to reducing thrombin generation. J. Thromb. Haemost. 20, 989–995. doi: 10.1111/jth.15641
  107. Kaiser R., Escaig R., Kranich J., Hoffknecht M.-L., Anjum A., Polewka V., Mader M., Hu W., Belz L., Gold C., Titova A., Lorenz M., Pekayvaz K., Kääb S., Gaertner F., Stark K., Brocker T., Massberg S., Nicolai L. 2022. Procoagulant platelet sentinels prevent inflammatory bleeding through GPIIBIIIA and GPVI. Blood. 140, 121–139. doi: 10.1182/blood.2021014914
  108. Yeung T., Gilbert G.E., Shi J., Silvius J., Kapus A., Grinstein S. 2008. Membrane phosphatidylserine regulates surface charge and protein localization. Science. 319, 210–213. doi: 10.1126/science.1152066
  109. Dirvelyte E., Bujanauskiene D., Jankaityte E., Daugelaviciene N., Kisieliute U., Nagula I., Budvytyte R., Neniskyte U. 2023. Genetically encoded phosphatidylserine biosensor for in vitro, ex vivo and in vivo labelling. Cell. Mol. Biol. Lett. 28, 59. doi: 10.1186/s11658-023-00472-7
  110. Wen Y., Dick R.A., Feigenson G.W., Vogt V.M. 2016. Effects of membrane charge and order on membrane binding of the retroviral structural protein Gag. J. Virol. 90, 9518–9532. doi: 10.1128/JVI.01102-16
  111. Tremel S., Ohashi Y., Morado D.R., Bertram J., Perisic O., Brandt L.T.L., Von Wrisberg M.-K., Chen Z.A., Maslen S.L., Kovtun O., Skehel M., Rappsilber J., Lang K., Munro S., Briggs J.A.G., Williams R.L. 2021. Structural basis for VPS34 kinase activation by Rab1 and Rab5 on membranes. Nat. Commun. 12, 1564. doi: 10.1038/s41467-021-21695-2
  112. Mesmin B., Bigay J., Moser von Filseck J., Lacas-Gervais S., Drin G., Antonny B. 2013. A four-step cycle driven by PI(4)P hydrolysis directs sterol/PI(4)P exchange by the ER-Golgi tether OSBP. Cell. 155, 830–843. doi: 10.1016/j.cell.2013.09.056
  113. Jiménez C., Portela R.A., Mellado M., Rodríguez-Frade J.M., Collard J., Serrano A., Martínez-A C., Avila J., Carrera A.C. 2000. Role of the Pi3k regulatory subunit in the control of actin organization and cell migration. J. Cell Biol. 151, 249–262. doi: 10.1083/jcb.151.2.249
  114. Gulluni F., Prever L., Li H., Krafcikova P., Corrado I., Lo W.-T., Margaria J.P., Chen A., De Santis M.C., Cnudde S.J., Fogerty J., Yuan A., Massarotti A., Sarijalo N.T., Vadas O., Williams R.L., Thelen M., Powell D.R., Schueler M., Wiesener M.S., Balla T., Baris H.N., Tiosano D., McDermott B.M., Perkins B.D., Ghigo A., Martini M., Haucke V., Boura E., Merlo G.R., Buchner D.A., Hirsch E. 2021. PI(3,4)P2-mediated cytokinetic abscission prevents early senescence and cataract formation. Science. 374, eabk0410. doi: 10.1126/science.abk0410
  115. Edwards-Hicks J., Apostolova P., Buescher J.M., Maib H., Stanczak M.A., Corrado M., Klein Geltink R.I., Maccari M.E., Villa M., Carrizo G.E., Sanin D.E., Baixauli F., Kelly B., Curtis J.D., Haessler F., Patterson A., Field C.S., Caputa G., Kyle R.L., Soballa M., Cha M., Paul H., Martin J., Grzes K.M., Flachsmann L., Mitterer M., Zhao L., Winkler F., Rafei-Shamsabadi D.A., Meiss F., Bengsch B., Zeiser R., Puleston D.J., O’Sullivan D., Pearce E.J., Pearce E.L. 2023. Phosphoinositide acyl chain saturation drives CD8+ effector T cell signaling and function. Nat. Immunol. 24, 516–530. doi: 10.1038/s41590-023-01419-y
  116. Dooley H.C., Razi M., Polson H.E.J., Girardin S.E., Wilson M.I., Tooze S.A. 2014. WIPI2 Links LC3 conjugation with PI3P, autophagosome formation, and pathogen clearance by recruiting Atg12–5-16L1. Mol. Cell. 55, 238–252. doi: 10.1016/j.molcel.2014.05.021
  117. Luo X., Wasilko D.J., Liu Y., Sun J., Wu X., Luo Z.-Q., Mao Y. 2015. Structure of the Legionella virulence factor, SidC reveals a unique PI(4)P-specific binding domain essential for its targeting to the bacterial phagosome. PLOS Pathog. 11, e1004965. doi: 10.1371/journal.ppat.1004965
  118. Del Campo C.M., Mishra A.K., Wang Y.-H., Roy C.R., Janmey P.A., Lambright D.G. 2014. Structural Basis for PI(4)P-specific membrane recruitment of the Legionella pneumophila effector DrrA/SidM. Structure. 22, 397–408. doi: 10.1016/j.str.2013.12.018
  119. Roberts M.F., Khan H.M., Goldstein R., Reuter N., Gershenson A. 2018. Search and subvert: Minimalist bacterial phosphatidylinositol-specific phospholipase C Eenzymes. Chem. Rev. 118, 8435–8473. doi: 10.1021/acs.chemrev.8b00208
  120. Kutateladze T.G., Capelluto D.G.S., Ferguson C.G., Cheever M.L., Kutateladze A.G., Prestwich G.D., Overduin M. 2004. Multivalent mechanism of membrane insertion by the FYVE Domain. J. Biol. Chem. 279, 3050–3057. doi: 10.1074/jbc.M309007200
  121. Stahelin R.V., Burian A., Bruzik K.S., Murray D., Cho W. 2003. Membrane binding mechanisms of the PX Domains of NADPH Oxidase p40 and p47. J. Biol. Chem. 278, 14469–14479. doi: 10.1074/jbc.M212579200
  122. Lomize A.L., Pogozheva I.D., Lomize M.A., Mosberg H.I. 2007. The role of hydrophobic interactions in positioning of peripheral proteins in membranes. BMC Struct. Biol. 7, 44. doi: 10.1186/1472-6807-7-44
  123. Myeong J., Park C.-G., Suh B.-C., Hille B. 2021. Compartmentalization of phosphatidylinositol 4,5-bisphosphate metabolism into plasma membrane liquid-ordered/raft domains. Proc. Natl. Acad. Sci. 118, e2025343118. doi: 10.1073/pnas.2025343118
  124. Godi A., Campli A.D., Konstantakopoulos A., Tullio G.D., Alessi D.R., Kular G.S., Daniele T., Marra P., Lucocq J.M., Matteis M.A.D. 2004. FAPPs control Golgi-to-cell-surface membrane traffic by binding to ARF and PtdIns(4)P. Nat. Cell Biol. 6, 393–404. doi: 10.1038/ncb1119
  125. Hammond G.R.V., Schiavo G., Irvine R.F. 2009. Immunocytochemical techniques reveal multiple, distinct cellular pools of PtdIns4 P and PtdIns(4,5) P 2. Biochem. J. 422, 23–35. doi: 10.1042/BJ20090428
  126. Watt S.A., Kular G., Fleming I.N., Downes C.P., Lucocq J.M. 2002. Subcellular localization of phosphatidylinositol 4,5-bisphosphate using the pleckstrin homology domain of phospholipase C δ1. Biochem. J. 363, 657–666. doi: 10.1042/bj3630657
  127. Hoshino F., Sakane F. 2020. Polyunsaturated fatty acid-containing phosphatidic acids selectively interact with L-lactate dehydrogenase A and induce its secondary structural change and inactivation. Biochim. Biophys. Acta BBA - Mol. Cell Biol. Lipids. 1865, 158768. doi: 10.1016/j.bbalip.2020.158768
  128. Zhukovsky M.A., Filograna A., Luini A., Corda D., Valente C. 2019. Phosphatidic acid in membrane rearrangements. FEBS Lett. 593, 2428–2451. doi: 10.1002/1873-3468.13563
  129. Liu Y., Su Y., Wang X. 2013. Phosphatidic acid-mediated signaling. pp. 159–176. In: Lipid-mediated Protein Signaling, (Capelluto, Daniel G. S. eds.) Springer Netherlands, Dordrecht.
  130. Touret N., Paroutis P., Terebiznik M., Harrison R.E., Trombetta S., Pypaert M., Chow A., Jiang A., Shaw J., Yip C., Moore H.-P., Van Der Wel N., Houben D., Peters P.J., De Chastellier C., Mellman I., Grinstein S. 2005. Quantitative and Ddynamic assessment of the contribution of the ER to phagosome formation. Cell. 123, 157–170. doi: 10.1016/j.cell.2005.08.018
  131. Gagnon E., Duclos S., Rondeau C., Chevet E., Cameron P.H., Steele-Mortimer O., Paiement J., Bergeron J.J.M., Desjardins M. 2002. Endoplasmic reticulum-mediated phagocytosis is a mechanism of entry into macrophages. Cell. 110, 119–131. doi: 10.1016/S0092-8674(02)00797-3
  132. Abe M., Makino A., Hullin-Matsuda F., Kamijo K., Ohno-Iwashita Y., Hanada K., Mizuno H., Miyawaki A., Kobayashi T. 2012. A Role for sphingomyelin-rich lipid domains in the accumulation of phosphatidylinositol-4,5-bisphosphate to the cleavage furrow during cytokinesis. Mol. Cell. Biol. 32, 1396–1407. doi: 10.1128/MCB.06113-11
  133. Hullin-Matsuda F., Murate M., Kobayashi T. 2018. Protein probes to visualize sphingomyelin and ceramide phosphoethanolamine. Chem. Phys. Lipids. 216, 132–141. doi: 10.1016/j.chemphyslip.2018.09.002
  134. Spiegel S., Foster D., Kolesnick R. 1996. Signal transduction through lipid second messengers. Curr. Opin. Cell Biol. 8, 159–167. doi: 10.1016/S0955-0674(96)80061-5
  135. Hannun Y.A. 1996. Functions of ceramide in coordinating cellular responses to stress. Science. 274, 1855–1859. doi: 10.1126/science.274.5294.1855
  136. Hannun Y. 1995. Ceramide: An intracellular signal for apoptosis. Trends Biochem. Sci. 20, 73–77. doi: 10.1016/S0968-0004(00)88961-6
  137. Edidin M. 2003. The state of lipid rafts: From model membranes to cells. Annu. Rev. Biophys. Biomol. Struct. 32, 257–283. doi: 10.1146/annurev.biophys.32.110601.142439
  138. Simons K., Ikonen E. 1997. Functional rafts in cell membranes. Nature. 387, 569–572. doi: 10.1038/42408
  139. Haan L.D., Hirst T.R. 2004. Cholera toxin: A paradigm for multi-functional engagement of cellular mechanisms (Review). Mol. Membr. Biol. 21, 77–92. doi: 10.1080/09687680410001663267
  140. Yamaji A., Sekizawa Y., Emoto K., Sakuraba H., Inoue K., Kobayashi H., Umeda M. 1998. Lysenin, a novel sphingomyelin-specific binding protein. J. Biol. Chem. 273, 5300–5306. doi: 10.1074/jbc.273.9.5300
  141. Ishitsuka R., Yamaji-Hasegawa A., Makino A., Hirabayashi Y., Kobayashi T. 2004. A lipid-specific toxin reveals heterogeneity of sphingomyelin-containing membranes. Biophys. J. 86, 296–307. doi: 10.1016/S0006-3495(04)74105-3
  142. Bakrač B., Gutiérrez-Aguirre I., Podlesek Z., Sonnen A.F.-P., Gilbert R.J.C., Maček P., Lakey J.H., Anderluh G. 2008. Molecular determinants of sphingomyelin specificity of a eukaryotic pore-forming toxin. J. Biol. Chem. 283, 18665–18677. doi: 10.1074/jbc.M708747200
  143. Belmonte G., Pederzolli C., Maček P., Menestrina G. 1993. Pore formation by the sea anemone cytolysin equinatoxin II in red blood cells and model lipid membranes. J. Membr. Biol. 131, 11–22. doi: 10.1007/BF02258530
  144. Kristan K., Podlesek Z., Hojnik V., Gutiérrez-Aguirre I., Gunčar G., Turk D., González-Mañas J.M., Lakey J.H., Maček P., Anderluh G. 2004. Pore formation by Equinatoxin, a eukaryotic pore-forming toxin, requires a flexible N-terminal region and a stable β-sandwich. J. Biol. Chem. 279, 46509–46517. doi: 10.1074/jbc.M406193200
  145. Skočaj M., Resnik N., Grundner M., Ota K., Rojko N., Hodnik V., Anderluh G., Sobota A., Maček P., Veranič P., Sepčić K. 2014. Tracking cholesterol/sphingomyelin-rich membrane domains with the ostreolysin A-mCherry protein. PLoS ONE. 9, e92783. doi: 10.1371/journal.pone.0092783
  146. Ikonen E. 2008. Cellular cholesterol trafficking and compartmentalization. Nat. Rev. Mol. Cell Biol. 9, 125–138. doi: 10.1038/nrm2336
  147. Maxfield F.R., Tabas I. 2005. Role of cholesterol and lipid organization in disease. Nature. 438, 612–621. doi: 10.1038/nature04399
  148. Yeagle P.L. 1991. Modulation of membrane function by cholesterol. Biochimie. 73, 1303–1310. doi: 10.1016/0300-9084(91)90093-G
  149. Yeagle P.L. 1985. Cholesterol and the cell membrane. Biochim. Biophys. Acta BBA - Rev. Biomembr. 822, 267–287. doi: 10.1016/0304-4157(85)90011-5
  150. Demel R.A., Bruckdorfer K.R., Van Deenen L.L.M. 1972. The effect of sterol structure on the permeability of lipomes to glucose, glycerol and Rb+. Biochim. Biophys. Acta BBA - Biomembr. 255, 321–330. doi: 10.1016/0005-2736(72)90031-4
  151. Issop L., Rone M.B., Papadopoulos V. 2013. Organelle plasticity and interactions in cholesterol transport and steroid biosynthesis. Mol. Cell. Endocrinol. 371, 34–46. doi: 10.1016/j.mce.2012.12.003
  152. Russell D.W. 2003. The enzymes, regulation, and genetics of bile Acid synthesis. Annu. Rev. Biochem. 72, 137–174. doi: 10.1146/annurev.biochem.72.121801.161712
  153. Lingwood D., Simons K. 2010. Lipid rafts as a membrane-organizing principle. Science. 327, 46–50. doi: 10.1126/science.1174621
  154. Fantini J., Barrantes F.J. 2013. How cholesterol interacts with membrane proteins: An exploration of cholesterol-binding sites including CRAC, CARC, and tilted domains. Front. Physiol. 4, doi: 10.3389/fphys.2013.00031
  155. Levitan I., Singh D.K., Rosenhouse-Dantsker A. 2014. Cholesterol binding to ion channels. Front. Physiol. 5, doi: 10.3389/fphys.2014.00065
  156. Jiang Q.-X. 2019. Cholesterol-dependent gating effects on ion channels. pp. 167–190. In: Cholesterol Modulation of Protein Function, (Rosenhouse-Dantsker, Avia and Bukiya, Anna N. eds.) Springer International Publishing, Cham.
  157. Kiriakidi S., Kolocouris A., Liapakis G., Ikram S., Durdagi S., Mavromoustakos T. 2019. Effects of cholesterol on GPCR function: Insights from computational and experimental studies. Adv. Exp. Med. Biol. 1135, 89–103. doi: 10.1007/978-3-030-14265-0_5
  158. Francis K.R., Ton A.N., Xin Y., O’Halloran P.E., Wassif C.A., Malik N., Williams I.M., Cluzeau C.V., Trivedi N.S., Pavan W.J., Cho W., Westphal H., Porter F.D. 2016. Modeling Smith-Lemli-Opitz syndrome with induced pluripotent stem cells reveals a causal role for Wnt/β-catenin defects in neuronal cholesterol synthesis phenotypes. Nat. Med. 22, 388–396. doi: 10.1038/nm.4067
  159. Sheng R., Kim H., Lee H., Xin Y., Chen Y., Tian W., Cui Y., Choi J.-C., Doh J., Han J.-K., Cho W. 2014. Cholesterol selectively activates canonical Wnt signalling over non-canonical Wnt signalling. Nat. Commun. 5, 4393. doi: 10.1038/ncomms5393
  160. Sheng R., Chen Y., Yung Gee H., Stec E., Melowic H.R., Blatner N.R., Tun M.P., Kim Y., Källberg M., Fujiwara T.K., Hye Hong J., Pyo Kim K., Lu H., Kusumi A., Goo Lee M., Cho W. 2012. Cholesterol modulates cell signaling and protein networking by specifically interacting with PDZ domain-containing scaffold proteins. Nat. Commun. 3, 1249. doi: 10.1038/ncomms2221
  161. Liu S.-L., Sheng R., Jung J.H., Wang L., Stec E., O’Connor M.J., Song S., Bikkavilli R.K., Winn R.A., Lee D., Baek K., Ueda K., Levitan I., Kim K.-P., Cho W. 2017. Orthogonal lipid sensors identify transbilayer asymmetry of plasma membrane cholesterol. Nat. Chem. Biol. 13, 268–274. doi: 10.1038/nchembio.2268
  162. Orci L., Perrelet A., Montesano R. 1983. Differential filipin labeling of the luminal membranes lining the pancreatic acinus. J. Histochem. Cytochem. 31, 952–955. doi: 10.1177/31.7.6854007
  163. Gimpl G., Gehrig-Burger K. 2007. Cholesterol reporter molecules. Biosci. Rep. 27, 335–358. doi: 10.1007/s10540-007-9060-1
  164. Wilhelm L.P., Voilquin L., Kobayashi T., Tomasetto C., Alpy F. 2019. Intracellular and plasma membrane cholesterol labeling and quantification using filipin and GFP-D4. pp. 137–152. In: Intracellular Lipid Transport, (Drin, Guillaume eds.) Springer New York, New York, NY.
  165. Endapally S., Infante R.E., Radhakrishnan A. 2019. Monitoring and modulating intracellular cholesterol trafficking using ALOD4, a cholesterol-binding protein. pp. 153–163. In: Intracellular Lipid Transport, (Drin, Guillaume eds.) Springer New York, New York, NY.
  166. Tweten R.K., Hotze E.M., Wade K.R. 2015. The unique molecular choreography of giant pore formation by the cholesterol-dependent cytolysins of cram-positive bacteria. Annu. Rev. Microbiol. 69, 323–340. doi: 10.1146/annurev-micro-091014-104233
  167. Rossjohn J., Feil S.C., McKinstry W.J., Tweten R.K., Parker M.W. 1997. Structure of a cholesterol-binding, thiol-activated cytolysin and a model of its membrane form. Cell. 89, 685–692. doi: 10.1016/S0092-8674(00)80251-2
  168. Das A., Goldstein J.L., Anderson D.D., Brown M.S., Radhakrishnan A. 2013. Use of mutant125 I-Perfringolysin O to probe transport and organization of cholesterol in membranes of animal cells. Proc. Natl. Acad. Sci. 110, 10580–10585. doi: 10.1073/pnas.1309273110
  169. Im Y.J., Raychaudhuri S., Prinz W.A., Hurley J.H. 2005. Structural mechanism for sterol sensing and transport by OSBP-related proteins. Nature. 437, 154–158. doi: 10.1038/nature03923
  170. De Saint-Jean M., Delfosse V., Douguet D., Chicanne G., Payrastre B., Bourguet W., Antonny B., Drin G. 2011. Osh4p exchanges sterols for phosphatidylinositol 4-phosphate between lipid bilayers. J. Cell Biol. 195, 965–978. doi: 10.1083/jcb.201104062
  171. Naito T., Ercan B., Krshnan L., Triebl A., Koh D.H.Z., Wei F.-Y., Tomizawa K., Torta F.T., Wenk M.R., Saheki Y. 2019. Movement of accessible plasma membrane cholesterol by the GRAMD1 lipid transfer protein complex. eLife. 8, e51401. doi: 10.7554/eLife.51401
  172. Ercan B., Naito T., Koh D.H.Z., Dharmawan D., Saheki Y. 2021. Molecular basis of accessible plasma membrane cholesterol recognition by the GRAM domain of GRAMD1b. EMBO J. 40, e106524. doi: 10.15252/embj.2020106524
  173. Kay J.G., Koivusalo M., Ma X., Wohland T., Grinstein S. 2012. Phosphatidylserine dynamics in cellular membranes. Mol. Biol. Cell. 23, 2198–2212. doi: 10.1091/mbc.e11-11-0936
  174. Liu S.-L., Wang Z.-G., Hu Y., Xin Y., Singaram I., Gorai S., Zhou X., Shim Y., Min J.-H., Gong L.-W., Hay N., Zhang J., Cho W. 2018. Quantitative lipid imaging reveals a new signaling function of phosphatidylinositol-3,4-bisphophate: Isoform- and site-specific activation of Akt. Mol. Cell. 71, 1092-1104.e5. doi: 10.1016/j.molcel.2018.07.035
  175. Quijano-Rubio A., Yeh H.-W., Park J., Lee H., Langan R.A., Boyken S.E., Lajoie M.J., Cao L., Chow C.M., Miranda M.C., Wi J., Hong H.J., Stewart L., Oh B.-H., Baker D. 2021. De novo design of modular and tunable protein biosensors. Nature. 591, 482–487. doi: 10.1038/s41586-021-03258-z
  176. Yang J.-M., Chi W.-Y., Liang J., Takayanagi S., Iglesias P.A., Huang C.-H. 2021. Deciphering cell signaling networks with massively multiplexed biosensor barcoding. Cell. 184, 6193-6206.e14. doi: 10.1016/j.cell.2021.11.005

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Major classes of lipids in mammalian cells. The designations R1 and R2 indicate the position of fatty acid chains. The site of attachment of polar head groups of basic glycerophospholipids to phosphatidic acid is indicated by red lines.

Download (275KB)
3. Fig. 2. Structure of the phosphatidylcholine-binding C2 domain of phospholipase A2 (PLA2C2, Protein Data Bank (PDB) code 1RLW). Ca2+ ions required for binding of the domain to the membrane are indicated in blue. Red color indicates hydrophobic side chains of amino acid residues embedded in the hydrocarbon backbone of the membrane when the domain binds to the membrane [23, 24].

Download (195KB)
4. Fig. 3. Structure of phosphatidylserine-binding domains and proteins. Binding of the “annexin core” of annexin A5 (PDB code 1A8A) to the membrane through ten coordinated Ca2+ ions (marked in blue) forming “bridges” between the protein and the membrane is shown [93, 94]. The binding of the C2 domain of lactadherin (LactC2, PDB code 3BN6), PH domain of ejectin-2 (PH evt-2, PDB code 3VIA), and Tim4 (PDB code 3BIB) is accomplished by introducing hydrophobic side chains of amino acid residues into the hydrocarbon backbone of the membrane (indicated in red) [26, 95, 96].

Download (469KB)
5. Fig. 4. Structure of the main types of phosphatidylinositol-binding domains and proteins. Examples for each type include the PI-specific bacterial phospholipase C (BcPI-PLC H82A, PDB code 6S2A) [32, 119], the dimerized FYVE domain of early endosomal antigen-1 (FYVE-EEA1x2, PDB code 1JOC), structurally essential Zn2+ ions are indicated in orange [120], PX domain of NADPH-oxidase p40phox (PX-p40phox, PDB code 1H6H) [121], PH domain of phospholipase C gamma 1 (PLCδ1-PH, PDB code 1MAI) [122], P4C- and P4M-domains of bacterial proteins SidC (P4C-SidC, PDB code 4TRH) [117] and SidM (P4M-SidM, PDB code 4MXP) [118]. Binding is accomplished by introducing hydrophobic side chains of amino acid residues into the hydrocarbon backbone of the membrane (indicated in red).

Download (451KB)

Copyright (c) 2025 The Russian Academy of Sciences