Fast Transfer of Photoreleased Protons from Water to Lipid Membrane
- 作者: Tashkin V.Y.1, Zykova D.D.1,2, Pozdeeva L.E.3, Sokolov V.S.1
-
隶属关系:
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences
- Moscow Institute of Physics and Technology (National Research University)
- Lomonosov Moscow State University
- 期: 卷 42, 编号 2 (2025)
- 页面: 107-116
- 栏目: Articles
- URL: https://gynecology.orscience.ru/0233-4755/article/view/680869
- DOI: https://doi.org/10.31857/S0233475525020029
- EDN: https://elibrary.ru/UFTSLK
- ID: 680869
如何引用文章
详细
The transfer of protons between the surface of lipid membrane and water can be slowed down by the presence of a high potential barrier, which affects the functioning of proton-transporting proteins. To evaluate the rate of the proton transfer across the barrier, the photoactivatable compounds that can adsorb on the membrane boundary and release protons upon excitation are used. One of these compounds, which we studied earlier, sodium salt of 2-methoxy-5-nitrophenylsulfate (MNPS), was used in this work. The molecule of MNPS can adsorb on the bilayer lipid membrane (BLM) as anion and release sulfate and proton upon excitation with UV light, becoming an electroneutral product. Upon illumination of the BLM, on one side of which MNPS anions were adsorbed, changes in the electrostatic potential at the membrane–water interface were observed. The slow changes of the potential were measured by the intramembrane field compensation method and the fast changes, by the operational amplifier as an electrometer. When the light was switched on, the potential increased rapidly, and when the light was switched off, the potential slowly returned to its initial value. The rate of rapid potential increase depended on the lipid composition of BLM, buffer concentration, and pH of the medium. The dependence of this rate on pH was different for BLMs formed from phosphatidylcholine and its mixture with phosphatidylserine. With increasing buffer concentration, the rate decreased tens of times. The results obtained indicate that the reaction of proton release formed during the excitation of MNPS molecules occurs both on the membrane surface and in the water near it. The main contribution to the change in the electrostatic potential at the membrane boundary is given by protons bound at its surface from the reaction in water.
全文:

作者简介
V. Tashkin
Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences
Email: sokolovvs@mail.ru
俄罗斯联邦, Moscow, 119071
D. Zykova
Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences; Moscow Institute of Physics and Technology (National Research University)
Email: sokolovvs@mail.ru
俄罗斯联邦, Moscow, 119071; Dolgoprudny, 141700
L. Pozdeeva
Lomonosov Moscow State University
Email: sokolovvs@mail.ru
俄罗斯联邦, Moscow, 119991
V. Sokolov
Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences
编辑信件的主要联系方式.
Email: sokolovvs@mail.ru
俄罗斯联邦, Moscow, 119071
参考
- Cherepanov D.A., Feniouk B.A., Junge W., Mulkidjanian A.Y. 2003. Low dielectric permittivity of water at the membrane interface: Effect on the energy coupling mechanism in biological membranes. Biophys. J. 85 (2), 1307–1316. doi: 10.1016/S0006-3495(03)74565-2.
- Georgievskii Yu., Medvedev E.S., Stuchebrukhov A.A. 2002. Proton transport via the membrane surface. Biophys. J. 82, 2833–2846. doi: 10.1016/S0006-3495(02)75626-9.
- Agmon N., Bakker H.J., Campen R.K., Henchman R.H., Pohl P., Roke S., Thamer M., Hassanali A. 2016. Protons and hydroxide ions in aqueous systems. Chem. Rev. 116 (13), 7642–7672. doi: 10.1021/acs.chemrev.5b00736.
- Zhang C., Knyazev D.G., Vereshaga Y.A., Ippoliti E., Nguyen T.H., Carloni P., Pohl P. 2012. Water at hydrophobic interfaces delays proton surface-to-bulk transfer and provides a pathway for lateral proton diffusion. Proc. Natl. Acad. Sci. U.S.A. 109 (25), 9744–9749. doi: 10.1073/pnas.1121227109
- Weichselbaum E., Osterbauer M., Knyazev D.G., Batishchev O.V., Akimov S.A., Hai N.T., Zhang C., Knor G., Agmon N., Carloni P. 2017. Origin of proton affinity to membrane/water interfaces. Sci. Rep. 7, 4553. doi: 10.1038/s41598-017-04675-9
- Serowy S., Saparov S.M., Antonenko Y.N., Kozlovsky W., Hagen V., Pohl P. 2003. Structural proton diffusion along lipid bilayers. Biophys. J. 84 (2 Pt 1), 1031–1037. doi: 10.1016/S0006-3495(03)74919-4
- Springer A., Hagen V., Cherepanov D.A., Antonenko Y.N., Pohl P. 2011. Protons migrate along interfacial water without significant contributions from jumps between ionizable groups on the membrane surface. Proc. Natl. Acad. Sci. U.S.A. 108 (35), 14461–14466. doi: 10.1073/pnas.1107476108
- Cherepanov D.A., Junge W., Mulkidjanian A.Y. 2004. Proton transfer dynamics at the membrane/water interface: Dependence on the fixed and mobile pH buffers, on the size and form of membrane particles, and on the interfacial potential barrier. Biophys. J. 86 (2), 665–680. doi: 10.1016/S0006-3495(04)74146-6
- Yamashita T., Voth G.A. 2010. Properties of hydrated excess protons near phospholipid bilayers. J. Phys. Chem. B. 114 (1), 592–603. doi: 10.1021/jp908768c
- Nguyen T.H., Zhang C., Weichselbaum E., Knyazev D.G., Pohl P., Carloni P. 2018. Interfacial water molecules at biological membranes: Structural features and role for lateral proton diffusion. PLoS. One. 13 (2), e0193454. doi: 10.1371/journal.pone.0193454
- Gutman M., Nachliel E., Bamberg E., Christensen B. 1987. Time-resolved protonation dynamics of a black lipid membrane monitored by capacitative currents. Biochim. Biophys. Acta. 905 (2), 390–398. doi: 10.1016/0005-2736(87)90468-8
- Fibich A., Janko K., Apell H.J. 2007. Kinetics of proton binding to the sarcoplasmic reticulum Ca-ATPase in the E1 state. Biophys. J. 93 (9), 3092–3104. doi: 10.1529/biophysj.107.110791
- Geissler D., Antonenko Y.N., Schmidt R., Keller S., Krylova O.O., Wiesner B., Bendig J., Pohl P., Hagen V. 2005. (Coumarin-4-yl)methyl esters as highly efficient, ultrafast phototriggers for protons and their application to acidifying membrane surfaces. Angew. Chem. Int. Ed. Engl. 44 (8), 1195–1198. doi: 10.1002/anie.200461567
- Вишнякова В.Е., Ташкин В.Ю., Терентьев А.О., Апель Х.-Ю., Соколов В.С. 2018. Связывание ионов калия в канале доступа с цитоплазматической стороны Na,K,ATP-азы. Биол. мембраны. 35 (5), 376–383. doi: 10.1134/S0233475518040199
- Ташкин В.Ю., Вишнякова В.Е., Щербаков А.А., Финогенова О.А., Ермаков Ю.А., Соколов В.С. 2019. Изменение емкости и граничного потенциала бислойной липидной мембраны при быстром освобождении протонов на ее поверхности . Биол. мембраны. 36 (2), 101–108. doi: 10.1134/S0233475519020075
- Sokolov V.S., Tashkin V.Yu., Zykova D.D., Kharitonova Yu.V., Galimzyanov T.R., Batishchev O.V. 2023. Electrostatic potentials caused by the release of protons from photoactivated compound sodium 2-methoxy-5-nitrophenyl sulfate at the surface of bilayer lipid membrane. Membranes. 13 (8), 722. doi: 10.3390/membranes13080722
- Mueller P., Rudin D.O., Tien H.T., Wescott W.C. 1963. Methods for the formation of single bimolecular lipid membranes in aqueous solution. J. Phys. Chem. 67, 534–535. doi: 10.1021/j100796a529
- MacDonald R.C., Bangham A.D. 1972. Comparison of double layer potentials in lipid monolayers and lipid bilayers membranes. J. Membrane Biol. 7, 29–53. doi: 10.1007/BF01867908
- Ermakov Yu.A., Sokolov V.S. Planar Lipid Bilayers (BLMs) and their applications. Eds. H.T.Tien, A.Ottova-Leitmannova. Amsterdam. Boston, London, New York, Oxford, Paris, Dan Diego, San Francisco, Singapore, Sidney, Tokio: Elsevier, 2003. p. 109–141.
- Sokolov V.S., Mirsky V.M. Ultrathin Electrochemical Chemo- and Biosensors: Technology and Performance. Ed. Mirsky V.M. Heidelberg: Springer-Verlag, 2004. p. 255–291.
- Cherny V.V., Sokolov V.S., Abidor I.G. 1980. Determination of surface charge of bilayer lipid membranes. Bioelectrochem. Bioenerg. 7, 413–420. doi: 10.1016/0302-4598(80)80002-X
- Denieva Z.G., Sokolov V.S., Batishchev O.V. 2024. HIV-1 Gag polyprotein affinity to the lipid membrane is independent of its surface charge. Biomolecules. 14 (9), 1086. doi: 10.3390/biom14091086
- Bangham A.D. 1968. Membrane models with phospholipids. Prog. Biophys. Mol. Biol. 18, 29–95. doi: 10.1016/0079-6107(68)90019-9
- Ермаков Ю.А., Авербах А.З., Арбузова А.Б., Сухарев С.И. 1998. Липидные и клеточные мембраны в присутствии гадолиния и других ионов с высоким сродством к липидам. 2. Дипольная компонента граничного потенциала мембран с разным поверхностным зарядом. Биол. мембраны. 15 (3), 330–341.
- Mitkova D., Marukovich N., Ermakov Yu.A., Vitkova V. 2014. Bending rigidity of phosphatidylserine-containing lipid bilayers inacidic aqueous solutions. Colloids and Surfaces A: Physicochem. Eng. Aspects. 460, 71–78. doi: 10.1016/j.colsurfa.2013.12.059
补充文件
