Influence of Membrane Curvature on the Energy Barrier of Pore Formation

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Formation of through conducting defects — pores — in the lipid bilayer affects many processes in living cells and can lead to strong changes in cellular metabolism. Pore formation is a complex topological rearrangement and occurs in several stages: first, a hydrophobic through pore is formed, then it is reconstructed into a hydrophilic pore with a curved edge, the expansion of which leads to membrane rupture. Pore formation does not occur spontaneously, since it requires significant energy costs associated with membrane deformation. The evolution of the system is associated with overcoming one or two energy barriers, the ratio of their heights affects the stability of the pore and the probability of its formation. We study the effect of membrane curvature on the height of the energy barrier for the transition of a pore to a metastable hydrophilic state. We apply the theory of elasticity of lipid membranes and generalize the model of pore formation in flat membranes to the case of arbitrary curvature. We show that the barrier for pore formation decreases by 8 kBT when the radius of curvature decreases from 1000 to 10 nm, which facilitates the formation of a metastable pore. Our results are consistent with experimental data and can be used to model complex processes occurring in curved regions of living cell membranes.

全文:

受限制的访问

作者简介

R. Molotkovsky

Institute of Systems Biology and Medicine of Rospotrebnadzor

编辑信件的主要联系方式.
Email: rodion.molotkovskiy@gmail.com
俄罗斯联邦, Moscow, 117246

P. Bashkirov

Institute of Systems Biology and Medicine of Rospotrebnadzor

Email: rodion.molotkovskiy@gmail.com
俄罗斯联邦, Moscow, 117246

参考

  1. Watson H. 2015. Biological membranes. Essays Biochem. 59, 43–69.
  2. Casares D., Escribá P. V., Rosselló C. A. 2019. Membrane lipid composition: Effect on membrane and organelle structure, function and compartmentalization and therapeutic avenues. Int. J. Mol. Sci. 20, 2167.
  3. Xu J., Huang X. 2020. Lipid metabolism at membrane contacts: Dynamics and functions beyond lipid homeostasis. Front. Cell Dev. Biol. 8, 615856.
  4. Ammendolia D.A., Bement W.M., Brumell J.H. 2021. Plasma membrane integrity: Implications for health and disease. BMC Biol. 19, 71.
  5. Kulkarni C.V. 2012. Lipid crystallization: From self-assembly to hierarchical and biological ordering. Nanoscale. 4, 5779.
  6. Subczynski W.K., Wisniewska A., Yin J.-J., Hyde J.S., Kusumi A. 1994. Hydrophobic barriers of lipid bilayer membranes formed by reduction of water penetration by alkyl chain unsaturation and cholesterol. Biochemistry. 33, 7670–7681.
  7. Kilinc D., Gallo G., Barbee K. A. 2008. Mechanically-induced membrane poration causes axonal beading and localized cytoskeletal damage. Exp. Neurol. 212, 422–430.
  8. Khandelia H., Ipsen J.H., Mouritsen O.G. 2008. The impact of peptides on lipid membranes. Biochim. Biophys. Acta – Biomembr. 1778, 1528–1536.
  9. Agner G., Kaulin Y.A., Schagina L.V., Takemoto J.Y., Blasko K. 2000. Effect of temperature on the formation and inactivation of syringomycin E pores in human red blood cells and bimolecular lipid membranes. Biochim. Biophys. Acta - Biomembr. 1466, 79–86.
  10. Runas K.A., Malmstadt N. 2015. Low levels of lipid oxidation radically increase the passive permeability of lipid bilayers. Soft Matter. 11, 499–505.
  11. Van der Paal J., Neyts E.C., Verlackt C.C. W., Bogaerts A. 2016. Effect of lipid peroxidation on membrane permeability of cancer and normal cells subjected to oxidative stress. Chem. Sci. 7, 489–498.
  12. Mulvihill E., Sborgi L., Mari S.A., Pfreundschuh M., Hiller S., Müller D.J. 2018. Mechanism of membrane pore formation by human gasdermin‐D. EMBO J. 37, e98321.
  13. Westman J., Hube B., Fairn G.D. 2019. Integrity under stress: Host membrane remodelling and damage by fun-gal pathogens. Cell. Microbiol. 21, e13016.
  14. Yang N.J., Hinner M.J. 2015. Getting across the cell membrane: An overview for small molecules, peptides, and proteins. Site-Specific Protein Labeling: Methods and Protocols. 29–53.
  15. Cohen F.S., Melikyan G.B. 2004. The energetics of membrane fusion from binding, through hemifusion, pore formation, and pore enlargement. J. Membr. Biol. 199, 1–14.
  16. Mehier-Humbert S., Bettinger T., Yan F., Guy R.H. 2005. Plasma membrane poration induced by ultrasound exposure: Implication for drug delivery. J. Control. Release. 104, 213–222.
  17. Basañez G., Soane L., Hardwick J.M. 2012. A new view of the lethal apoptotic pore. PLoS Biol. 10, e1001399.
  18. Flores‐Romero H., Ros U., Garcia‐Saez A.J. 2020. Pore formation in regulated cell death. EMBO J. 39, e105753.
  19. Akimov S.A., Aleksandrova V.V., Galimzyanov T.R., Bashkirov P.V., Batishchev O.V. 2017. Mechanism of pore formation in stearoyl-oleoyl-phosphatidylcholine membranes subjected to lateral tension. Biochem. (Mos-cow), Suppl. Ser. A Membr. Cell Biol. 11, 193–205.
  20. Hub J.S., Awasthi N. 2017. Probing a continuous polar defect: A reaction coordinate for pore formation in lipid membranes. J. Chem. Theory Comput. 13, 2352–2366.
  21. Akimov S.A., Volynsky P.E., Galimzyanov T.R., Kuzmin P.I., Pavlov K.V., Batishchev O.V. 2017. Pore formation in lipid membrane I: Continuous reversible trajectory from intact bilayer through hydrophobic defect to transversal pore. Sci. Rep. 7, 12152.
  22. Abidor I.G., Arakelyan V.B., Chernomordik L.V., Chizmadzhev Y.A., Pastushenko V.F., Tarasevich M.P. 1979. Electric breakdown of bilayer lipid membranes. J. Electroanal. Chem. Interfacial Electrochem. 104, 37–52.
  23. Akimov S.A., Volynsky P.E., Galimzyanov T.R., Kuzmin P.I., Pavlov K.V., Batishchev O.V. 2017. Pore formation in lipid membrane II: Energy landscape under external stress. Sci. Rep. 7, 12509.
  24. Evans E., Heinrich V., Ludwig F., Rawicz W. 2003. Dynamic tension spectroscopy and strength of biomem-branes. Biophys. J. 85, 2342–2350.
  25. Frolov V.A., Zimmerberg J. 2010. Cooperative elastic stresses, the hydrophobic effect, and lipid tilt in membrane remodeling. FEBS Lett. 584, 1824–1829.
  26. Fujii S., Matsuura T., Yomo T. 2015 Membrane curvature affects the formation of α-hemolysin nanopores. ACS Chem. Biol. 10, 1694–1701.
  27. Tabaei S.R., Rabe M., Zhdanov V.P., Cho N.-J., Höök F. 2012. Single vesicle analysis reveals nanoscale mem-brane curvature selective pore formation in lipid membranes by an antiviral α-helical peptide. Nano Lett. 12, 5719–5725.
  28. Bassereau P., Jin R., Baumgart T., Deserno M., Dimova R., Frolov V.A., Bashkirov P.V., Grubmüller H., Jahn R., Risselada H.J., Johannes L., Kozlov M.M., Lipowsky R., Pucadyil T.J, Zeno W.F., Stachowiak J.C., Stamou D., Breuer A., Lauritsen L., Simon C., Sykes C., Voth G. A., Weikl T.R. 2018. The 2018 biomembrane curvature and remodeling roadmap. J. Phys. D. Appl. Phys. 51, 343001.
  29. Hamm M., Kozlov M.M. 2000. Elastic energy of tilt and bending of fluid membranes. Eur. Phys. J. E 3, 323–335.
  30. Kuzmin P.I., Zimmerberg J., Chizmadzhev Y.A., Cohen F.S. 2001. A quantitative model for membrane fusion based on low-energy intermediates. Proc. Natl. Acad. Sci. 98, 7235–7240.
  31. Shnyrova A.V., Bashkirov P.V., Akimov S.A., Pucadyil T.J., Zimmerberg J., Schmid S.L., Frolov V.A. 2013. Geometric catalysis of membrane fission driven by flexible dynamin rings. Science, 339, 1433–1436.
  32. Zucker B., Kozlov M.M. 2022. Mechanism of shaping membrane nanostructures of endoplasmic reticulum. Proc. Natl. Acad. Sci. 119, e2116142119.
  33. McMahon H. T., Kozlov M.M., Martens S. 2010. Membrane curvature in synaptic vesicle fusion and beyond. Cell 140, 601–605.

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Schematic representation of a hydrophobic (panel a) and hydrophilic (panel b) pore in a planar lipid bilayer.

下载 (294KB)
3. Fig. 2. Schematic representation of the initial state of the system. A segment of radius Rs is cut out from the membrane with radius of curvature Rc and replaced by the deformed membrane. The radius Rc is determined from the intermonolayer surface. The directors and neutrals are cross-linked at points with coordinates , where = arcsin(Rs/Rc) - half of the angle of solution of the spherical segment.

下载 (182KB)
4. Fig. 3. Calculated dependence of Ha(0) - Ha(Rs - hasin(g)) functions on r at Rs = 3, 6 and 8 nm. The sphere radius Rc = 20 nm; the monolayer thickness h = 1.5 nm. The elastic parameters of the system are as follows: B = 10 kBT, Kt = 40 mN/m and Ka = 120 mN/m per monolayer.

下载 (79KB)
5. Fig. 4. Schematic representation of a pore of radius r0 and thickness 2L in a curved membrane. The “horizontal” bilayer section of the membrane is highlighted in orange, the “vertical” monolayer sections are highlighted in blue. The pore is highlighted with a large dashed line. The shape of the membrane in the initial position is highlighted by a small dotted line.

下载 (89KB)
6. Fig. 5. Dependences of the energy change Wtot (panel a) and the equilibrium half-length of the hydrophobic pore edge site Lmin (panel b) on the pore radius r0. Curves for crosslinking radius Rs = 5 nm are shown in red; curves for crosslinking radius Rs = 50 nm; membrane radius of curvature Rc = 1000 nm are shown in blue. Green color indicates curves for membrane radius of curvature Rc = 10 nm; solid line corresponds to crosslinking radius Rs = 4 nm; dashed line corresponds to crosslinking radius Rs = 5 nm. The equilibrium membrane thickness is h = 1.5 nm; the dimensionless surface tension is 0 = 0.001. The monolayer elastic moduli are B = 10 kBT, Kt = 40 mN/m, and Ka = 120 mN/m. The spontaneous curvature is zero.

下载 (186KB)
7. Fig. 6. Results of varying the radius of curvature of the membrane Rc. a - Dependence of the system energy Wtot on the pore radius at different values of Rc (signed on the graph, values are given in nm). b - Dependence of the barrier height E1 on the transition of the system from the hydrophobic pore state to the hydrophilic pore state on Rc. For all curves the cross-linking radius Rs = 5 nm. Values of elastic parameters are given in the text.

下载 (177KB)
8. Fig. 7. Equilibrium shape of the membrane with hydrophobic (a) and hydrophilic (b) pores. The radius of curvature of the membrane Rc = 10 nm. The bilayer section is shown in blue, the monolayer “vertical” sections are shown in green, and the vertical dashed line shows the edge of the hydrophobic pore. The hydrophobic pore has the following parameters: r0 = 0.5 nm, Lmin = 1.05 nm, Ha = 2 nm. The hydrophilic pore has the following parameters: r0 = 1.8 nm, = 2.14 nm, Ha = 2 nm, Hb = - 0.5 nm, Za = 1 nm.

下载 (153KB)

版权所有 © The Russian Academy of Sciences, 2025