Thermodynamics of a Lipid Membrane with Curvature
- Autores: Drozdova A.A.1
-
Afiliações:
- National University of Science and Technology “MISIS”
- Edição: Volume 42, Nº 2 (2025)
- Páginas: 142-149
- Seção: Articles
- URL: https://gynecology.orscience.ru/0233-4755/article/view/680872
- DOI: https://doi.org/10.31857/S0233475525020051
- EDN: https://elibrary.ru/UFQPVF
- ID: 680872
Citar
Resumo
In this paper, we consider the lateral bending of the membrane surface and the lateral pressure profile in the neutral part of the membrane (the neutral part is the part of the membrane where no work is done to change the pressure). They are chosen in such a way as to calculate the given law of curvature change. Next, the lateral pressure along the thickness of the curved membrane is obtained. Computing the pressure profile along the thickness of the monolayer involves some difficulties. The formulas for these and other characteristics such as spontaneous bending moment, Gauss modulus for different phases and torsional modulus Ktw = K2 are given here. The formula for the lateral pressure profile in a membrane with curvature is obtained using the renormalization group.
Palavras-chave
Texto integral

Sobre autores
A. Drozdova
National University of Science and Technology “MISIS”
Autor responsável pela correspondência
Email: annafonalex@gmail.com
Rússia, Moscow, 119049
Bibliografia
- Дроздова, А. А., Мухин, С. И. 2017. Профиль латерального давления в липидных мембранах с кривизной: аналитический расчет. Журн. эксперим. и теорет. физики, 152 (2), 416–422
- Ollila O.H., Risselada H.J., Louhivuori M., Lindahl E., Vattulainen I., Marrink S.J. 2009. 3D pressure field in lipid membrane and membrane-protein complexes. Phys. Rev. Lett. 102, 078101.
- Marsh D. 2007. Lateral pressure profile, spontaneous curvature frustration, and the incorporation and conformation of proteins in membranes. Biophys. J. 93, 3884–3899.
- Quint D.A., Gopinathan A., Grason G.M. 2016. Shape selection of surface-bound helical filaments: Biopolymers on curved membranes. Biophys. J. 111 (7), 1575–1585.
- Gore J., Bryant Z., Nöllmann M., Le M.U, Cozzarelli N.R., Bustamante C. 2006. DNA overwinds when stretched. Nature. 442, 836–839.
- Hamm M., Kozlov M.M. 1998. Tilt model of inverted amphiphilic mesophases. Eur. Phys. J. B–Condensed Matter and Complex Systems, 6, 519–528.
- Gibaud T., Kaplan C.N., Sharma P., Zakhary M.J., Ward A., Oldenbourg R., Meyer R.B., Kamien R.D., Powers T.R., Dogic Z. 2017. Achiral symmetry breaking and positive Gaussian modulus lead to scalloped colloidal membranes. Proc. Natl. Acad. Sci. USA. 114 (17), E3376-E3384.
- Kozlovsky Y., Efrat A., Siegel D.A., Kozlov M.M. 2004. Stalk phase formation: Effects of dehydration and saddle splay modulus. Biophys. J. 87 (4), 2508–2521.
- Hu M., de Jong D.H., Marrink S.J., Deserno M. 2013. Gaussian curvature elasticity determined from global shape transformations and local stress distributions: A comparative study using the MARTINI model. Faraday Discussions. 161, 365–382.
- Leikin S., Kozlov M.M., Fuller N.L., Rand R.P. 1996. Measured effects of diacylglycerol on structural and elastic properties of phospholipid membranes. Biophys. J. 71 (5), 2623–2632
- Helfrich W., Kozlov M.M. 1993. Bending tensions and the bending rigidity of fluid membranes. J. Phys. II France. 3, 287–292.
- Nagle J. 2017. Experimentally determined tilt and bending moduli of single-component lipid bilayers. Chem. Phys. Lipids. 205, 18–24
- Kheyfets B.B., Galimzyanov T.R., Drozdova A.A., Mukhin S.I. 2016. Analytical calculation of the lipid bilayer bending modulus. Phys. Rev. E. 94, 042415.
Arquivos suplementares
