Thermodynamics of a Lipid Membrane with Curvature

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

In this paper, we consider the lateral bending of the membrane surface and the lateral pressure profile in the neutral part of the membrane (the neutral part is the part of the membrane where no work is done to change the pressure). They are chosen in such a way as to calculate the given law of curvature change. Next, the lateral pressure along the thickness of the curved membrane is obtained. Computing the pressure profile along the thickness of the monolayer involves some difficulties. The formulas for these and other characteristics such as spontaneous bending moment, Gauss modulus for different phases and torsional modulus Ktw = K2 are given here. The formula for the lateral pressure profile in a membrane with curvature is obtained using the renormalization group.

Texto integral

Acesso é fechado

Sobre autores

A. Drozdova

National University of Science and Technology “MISIS”

Autor responsável pela correspondência
Email: annafonalex@gmail.com
Rússia, Moscow, 119049

Bibliografia

  1. Дроздова, А. А., Мухин, С. И. 2017. Профиль латерального давления в липидных мембранах с кривизной: аналитический расчет. Журн. эксперим. и теорет. физики, 152 (2), 416–422
  2. Ollila O.H., Risselada H.J., Louhivuori M., Lindahl E., Vattulainen I., Marrink S.J. 2009. 3D pressure field in lipid membrane and membrane-protein complexes. Phys. Rev. Lett. 102, 078101.
  3. Marsh D. 2007. Lateral pressure profile, spontaneous curvature frustration, and the incorporation and conformation of proteins in membranes. Biophys. J. 93, 3884–3899.
  4. Quint D.A., Gopinathan A., Grason G.M. 2016. Shape selection of surface-bound helical filaments: Biopolymers on curved membranes. Biophys. J. 111 (7), 1575–1585.
  5. Gore J., Bryant Z., Nöllmann M., Le M.U, Cozzarelli N.R., Bustamante C. 2006. DNA overwinds when stretched. Nature. 442, 836–839.
  6. Hamm M., Kozlov M.M. 1998. Tilt model of inverted amphiphilic mesophases. Eur. Phys. J. B–Condensed Matter and Complex Systems, 6, 519–528.
  7. Gibaud T., Kaplan C.N., Sharma P., Zakhary M.J., Ward A., Oldenbourg R., Meyer R.B., Kamien R.D., Powers T.R., Dogic Z. 2017. Achiral symmetry breaking and positive Gaussian modulus lead to scalloped colloidal membranes. Proc. Natl. Acad. Sci. USA. 114 (17), E3376-E3384.
  8. Kozlovsky Y., Efrat A., Siegel D.A., Kozlov M.M. 2004. Stalk phase formation: Effects of dehydration and saddle splay modulus. Biophys. J. 87 (4), 2508–2521.
  9. Hu M., de Jong D.H., Marrink S.J., Deserno M. 2013. Gaussian curvature elasticity determined from global shape transformations and local stress distributions: A comparative study using the MARTINI model. Faraday Discussions. 161, 365–382.
  10. Leikin S., Kozlov M.M., Fuller N.L., Rand R.P. 1996. Measured effects of diacylglycerol on structural and elastic properties of phospholipid membranes. Biophys. J. 71 (5), 2623–2632
  11. Helfrich W., Kozlov M.M. 1993. Bending tensions and the bending rigidity of fluid membranes. J. Phys. II France. 3, 287–292.
  12. Nagle J. 2017. Experimentally determined tilt and bending moduli of single-component lipid bilayers. Chem. Phys. Lipids. 205, 18–24
  13. Kheyfets B.B., Galimzyanov T.R., Drozdova A.A., Mukhin S.I. 2016. Analytical calculation of the lipid bilayer bending modulus. Phys. Rev. E. 94, 042415.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Normal pressure profile in DPPC membrane with monolayer thickness L0 = 1.5 nm.

Baixar (172KB)
3. Fig. 2. Lateral pressure distribution in a DLPC membrane with radius curvature R = 31.4 nm, J = 1/R is the curvature of the upper monolayer (see Table 1).

Baixar (295KB)

Declaração de direitos autorais © The Russian Academy of Sciences, 2025