Simulation of the glycolytic metabolites concentration profile in mammalian resting skeletal muscles

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

For the first time, a mathematical model of glycolysis in mammalian skeletal muscles is presented, in which stationary concentrations of glycolysis metabolites are in good agreement with experimental data obtained in resting muscles. The correspondence between the model and experimental values of metabolite concentrations was achieved due to enhancing the inhibitory effect of ATP on pyruvate kinase and significantly reducing the ratio of [NAD]/[NADH] concentrations in the cytoplasm of skeletal muscles. At the same time, in order for glycolysis to provide the rate of ATP production necessary for activation of muscle load, an activation of muscle pyruvate kinase by fructose-1,6-diphosphate was included in the model.

Full Text

Restricted Access

About the authors

M. V. Martinov

Center for Theoretical Problems of Physico-Chemical Pharmacology, Russian Academy of Sciences

Email: victor_vitvitsky@yahoo.com
Russian Federation, Moscow, 109029

F. I. Ataullakhanov

Center for Theoretical Problems of Physico-Chemical Pharmacology, Russian Academy of Sciences; Moscow Institute of Physics and Technology

Email: victor_vitvitsky@yahoo.com
Russian Federation, Moscow, 109029; Dolgoprudny, Moscow oblast, 141701

V. M. Vitvitsky

Center for Theoretical Problems of Physico-Chemical Pharmacology, Russian Academy of Sciences

Author for correspondence.
Email: victor_vitvitsky@yahoo.com
Russian Federation, Moscow, 109029

References

  1. Chatzinikolaou P.N., Margaritelis N.V., Paschalis V., Theodorou A.A., Vrabas I.S., Kyparos A., D’Alessandro A., Nikolaidis M.G. 2024. Erythrocyte metabolism. Acta Physiol. 240 (3), e14081. doi: 10.1111/apha.14081.
  2. Domonkos J. 1961. The metabolism of the tonic and tetanic muscles I. Glycolytic metabolism. Arch. Biochem. Biophys. 95 (1), 138–143. doi: 10.1016/0003–9861(61)90118–7.
  3. Bass A., Brdiczka D., Eyer P., Hofer S., Pette D. 1969. Metabolic differentiation of distinct muscle types at the level of enzymatic organization. Eur. J. Biochem. 10 (2), 198–206. doi: 10.1111/j.1432–1033.1969.tb00674.x.
  4. Burleigh I.G., Schimke R.T. 1969. The activities of some enzymes concerned with energy metabolism in mammalian muscles of differing pigmentation. Biochem. J. 113 (1), 157–166. doi: 10.1042/bj1130157.
  5. Greenhaff P.L., Nevill M.E., Soderlund K., Bodin K., Boobis L.H., Williams C., Hultman E. 1994. The metabolic responses of human type I and II muscle fibres during maximal treadmill sprinting. J. Physiol. 478 (1), 149–155. doi: 10.1113/jphysiol.1994.sp020238.
  6. Vander Heiden M.G., Cantley L.C., Thompson C.B. 2009. Understanding the Warburg effect: The metabolic requirements of cell proliferation. Science. 324 (5930), 1029–1033. doi: 10.1126/science.1160809.
  7. Zhou D., Duan Z., Li Z., Ge F., Wei R., Kong L. 2022. The significance of glycolysis in tumor progression and its relationship with the tumor microenvironment. Front. Pharmacol. 13. 1091779. doi: 10.3389/fphar.2022.1091779.
  8. Rigoulet M., Bouchez C.L., Paumard P., Ransac S., Cuvellier S., Duvezin-Caubet S., Mazat J.P., Devin A. 2020. Cell energy metabolism: An update. Biochim. Biophys. Acta – Bioenergetics. 1861 (11), 148276. doi: 10.1016/j.bbabio.2020.148276.
  9. Soto‐Heredero G., Gómez de las Heras M.M., Gabandé‐Rodríguez E., Oller J., Mittelbrunn M. 2020. Glycolysis – a key player in the inflammatory response. FEBS J. 287 (16), 3350–3369. doi: 10.1111/febs.15327.
  10. Fuller G.G., Kim J.K. 2021. Compartmentalization and metabolic regulation of glycolysis. J. Cell Sci. 134 (20), jcs258469. doi: 10.1242/jcs.258469.
  11. Gustavsson A.-K., van Niekerk D.D., Adiels C.B., Goksör M., Snoep J.L. 2014. Heterogeneity of glycolytic oscillatory behaviour in individual yeast cells. FEBS Lett. 588 (1), 3–7. doi: 10.1016/j.febslet.2013.11.028.
  12. Ньюсхолм Э., Старт К. 1977. Регуляция метаболизма. М.: Мир.
  13. Rodwell V.W., Bender D., Botham K.M., Kennelly P.J., Weil P.A. 2018. Harper’s Illustrated Biochemistry, 31st ed. McGraw Hill / Medical, p. 412–428.
  14. Ren J.M., Hultman E. 1989. Regulation of glycogenolysis in human skeletal muscle. J. Appl. Physiol. 67 (6), 2243–2248. doi: 10.1152/jappl.1989.67.6.2243.
  15. Chasiotis D., Sahlin K., Hultman E. 1982. Regulation of glycogenolysis in human muscle at rest and during exercise. J. Appl. Physiol. 53 (3), 708–15. doi: 10.1152/jappl.1982.53.3.708.
  16. Parolin M.L., Chesley A., Matsos M.P., Spriet L.L., Jones N.L., Heigenhauser G.J.F. 1999. Regulation of skeletal muscle glycogen phosphorylase and PDH during maximal intermittent exercise. Am. J. Physiol.-Endocrin. Metab. 277 (5), E890–900. doi: 10.1152/ajpendo.1999.277.5.E890.
  17. Ren J.M., Hultman E. 1990. Regulation of phosphorylase a activity in human skeletal muscle. J. Appl. Physiol. 69 (3), 919–923. doi: 10.1152/jappl.1990.69.3.919.
  18. Spriet L.L., Howlett R.A., Heigenhauser G.J.F. 2000. An enzymatic approach to lactate production in human skeletal muscle during exercise. Med. Sci. Sports Exerc. 32 (4), 756–763. doi: 10.1097/00005768–200004000–00007.
  19. Sahlin K., Gorski J., Edstrom L. 1990. Influence of ATP turnover and metabolite changes on IMP formation and glycolysis in rat skeletal muscle. Am. J. Physiol.-Cell Physiol. 259 (3), C409–C412. doi: 10.1152/ajpcell.1990.259.3.C409.
  20. Chasiotis D., Sahlin K., Hultman E. 1983. Regulation of glycogenolysis in human muscle in response to epinephrine infusion. J. Appl. Physiol. 54 (1), 45–50. doi: 10.1152/jappl.1983.54.1.45.
  21. Katz A., Westerblad H. 2014. Regulation of glycogen breakdown and its consequences for skeletal muscle function after training. Mamm. Gen. 25 (9–10), 464–472. doi: 10.1007/s00335–014–9519-x.
  22. Katz A. 2022. A century of exercise physiology: Key concepts in regulation of glycogen metabolism in skeletal muscle. Eur. J. Appl. Physiol. 122 (8), 1751–1772. doi: 10.1007/s00421–022–04935–1.
  23. Martinov M.V, Plotnikov A.G., Vitvitsky V.M., Ataullakhanov F.I. 2000. Deficiencies of glycolytic enzymes as a possible cause of hemolytic anemia. Biochim. Biophys. Acta – General Subjects. 1474 (1), 75–87. doi: 10.1016/S0304–4165(99)00218–4.
  24. Korendyaseva T.K., Kuvatov D.N., Volkov V.A., Martinov M.V, Vitvitsky V.M., Banerjee R., Ataullakhanov F.I. 2008. An allosteric mechanism for switching between parallel tracks in mammalian sulfur metabolism. PLoS Comput Biol. 4 (5), e1000076. doi: 10.1371/journal.pcbi.1000076.
  25. Zaitsev A.V., Martinov M.V., Vitvitsky V.M., Ataullakhanov F.I. 2019. Rat liver folate metabolism can provide an independent functioning of associated metabolic pathways. Sci. Rep. 9 (1), 7657. doi: 10.1038/s41598–019–44009–5.
  26. Ataullakhanov F.I., Martinov M.V., Shi Q., Vitvitsky V.M. 2022. Significance of two transmembrane ion gradients for human erythrocyte volume stabilization. PLoS One. 17 (12), e0272675. doi: 10.1371/journal.pone.0272675.
  27. Protasov E., Martinov M., Sinauridze E., Vitvitsky V., Ataullakhanov F. 2023. Prediction of oscillations in glycolysis in ethanol-consuming erythrocyte-bioreactors. Int. J. Mol. Sci. 24 (12), 10124. doi: 10.3390/ijms241210124.
  28. Lambeth M.J., Kushmerick M.J. 2002. A computational model for glycogenolysis in skeletal muscle. Ann. Biomed. Eng. 30 (6), 808–827. doi: 10.1114/1.1492813.
  29. Li Y., Dash R.K., Kim J., Saidel G.M., Cabrera M.E. 2009. Role of NADH/ NAD + transport activity and glycogen store on skeletal muscle energy metabolism during exercise: In silico studies. Am. J. Physiol.-Cell Physiol. 296 (1), C25–C46. doi: 10.1152/ajpcell.00094.2008.
  30. Schmitz J.P.J., Van Riel N.A.W., Nicolay K., Hilbers P.A.J., Jeneson J.A.L. 2010. Silencing of glycolysis in muscle: Experimental observation and numerical analysis. Exp. Physiol. 95 (2), 380–397. doi: 10.1113/expphysiol.2009.049841.
  31. Karl I.E., Voyles N., Recant L. 1968. Effects of plasma albumin on glycolytic intermediates in rat diaphragm muscle. Diabetes. 17 (6), 374–384. doi: 10.2337/diab.17.6.374.
  32. Harris R.C., Hultman E., Nordesjö L.O. 1974. Glycogen, glycolytic intermediates and high-energy phosphates determined in biopsy samples of musculus quadriceps femoris of man at rest. Methods and variance of values. Scand. J. Clin. Lab. Invest. 33 (2), 109–120.
  33. Beatty C.H., Young M.K., Bocek R.M. 1976. Control of glycolysis in skeletal muscle from fetal rhesus monkeys. Pediatr. Res. 10 (3), 149–153. doi: 10.1203/00006450–197603000–00001.
  34. Cheetham M.E., Boobis L.H., Brooks S., Williams C. 1986. Human muscle metabolism during sprint running. J. Appl. Physiol. 61 (1), 54–60. doi: 10.1152/jappl.1986.61.1.54.
  35. Putman C.T., Jones N.L., Hultman E., Hollidge-Horvat M.G., Bonen A., McConachie D.R., Heigenhauser G.J.F. 1998. Effects of short-term submaximal training in humans on muscle metabolism in exercise. Am. J. Physio.l-Endocrin. Metab. 275 (1), E132–E139. doi: 10.1152/ajpendo.1998.275.1.E132.
  36. Ren J.M., Chasiotis D., Bergström M., Hultman E. 1988. Skeletal muscle glucolysis, glycogenolysis and glycogen phosphorylase during electrical stimulation in man. Acta Physiol. Scand. 133 (1), 101–107. doi: 10.1111/j.1748–1716.1988.tb08387.x.
  37. White A.T., Schenk S. 2012. NAD + /NADH and skeletal muscle mitochondrial adaptations to exercise. Am. J. Physiol.-Endocrin. Metab. 303 (3), E308–E321. doi: 10.1152/ajpendo.00054.2012.
  38. Hudlicka O., Aitman T., Heilig A., Leberer E., Tyler K.R., Pette D. 1984. Effects of different patterns of long-term stimulation on blood flow, fuel uptake and enzyme activities in rabbit fast skeletal muscles. Pflügers Arch. 402 (3), 306–311. doi: 10.1007/BF00585514.
  39. Burleigh I.G., Schimke R.T. 1968. On the activities of some enzymes concerned with glycolysis and glycogenolysis in extracts of rabbit skeletal muscles. Biochem. Biophys. Res. Commun. 31 (5), 831–836. doi: 10.1016/0006–291X(68)90638–4.
  40. Baldwin K., Winder W., Terjung R., Holloszy J. 1973. Glycolytic enzymes in different types of skeletal muscle: Adaptation to exercise. Am. J. Physiol.-Legacy Content. 225 (4), 962–966. doi: 10.1152/ajplegacy.1973.225.4.962.
  41. Surholt B., Newsholme E.A. 1981. Maximum activities and properties of glucose 6-phosphatase in muscles from vertebrates and invertebrates. Biochem. J. 198 (3), 621–629. doi: 10.1042/bj1980621.
  42. Blomstrand E., Ekblom B., Newsholme E.A. 1986. Maximum activities of key glycolytic and oxidative enzymes in human muscle from differently trained individuals. J. Physiol. 381 (1), 111–118. doi: 10.1113/jphysiol.1986.sp016316.
  43. Simoneau J.A., Bouchard C. 1989. Human variation in skeletal muscle fiber-type proportion and enzyme activities. Am. J. Physiol.-Endocrin. Metab. 257 (4), E567–E572. doi: 10.1152/ajpendo.1989.257.4.E567.
  44. Howald H., Pette D., Simoneau J.-A., Uber A., Hoppeler H., Cerretelli P. 1990. Effects of chronic hypoxia on muscle enzyme activities. Int. J. Sports Med. 11 (S 1), S10–S14. doi: 10.1055/s-2007–1024847.
  45. Pette D., Dölken G. 1975. Some aspects of regulation of enzyme levels in muscle energy-supplying metabolism. Adv. Enzyme Regul. 13, 355–377. doi: 10.1016/0065–2571(75)90025–4.
  46. DiMauro S., Dalakas M., Miranda A.F. 1983. Phosphoglycerate kinase deficiency: Another cause of recurrent myoglobinuria. Ann. Neurol. 13 (1), 11–19. doi: 10.1002/ana.410130104.
  47. Bresolin N., Ro Y.-I., Reyes M., Miranda A.F., DiMauro S. 1983. Muscle phosphogylcerate mutase (PGAM) deficiency: A second case. Neurology. 33 (8), 1049–1053. doi: 10.1212/WNL.33.8.1049.
  48. Berg A., Kim S., Keul J. 1986. Skeletal muscle enzyme activities in healthy young subjects*. Int. J. Sports Med. 7 (4), 236–239. doi: 10.1055/s-2008–1025766.
  49. Shonk C.E., Koven B.J., Majima H., Boxer G.E. 1964. Enzyme patterns in human tissues. II. Glycolytic enzyme patterns in nonmalignant human tissues. Cancer Res. 24, 722–731.
  50. Opie L., Newsholme E. 1967. The activities of fructose 1,6-diphosphatase, phosphofructokinase and phosphoenolpyruvate carboxykinase in white muscle and red muscle. Biochem. J. 103 (2), 391–399. doi: 10.1042/bj1030391.
  51. Roberts A., Billeter R., Howald H. 1982. Anaerobic muscle enzyme changes after interval training. Int. J. Sports Med. 3 (1), 18–21. doi: 10.1055/s-2008–1026055.
  52. Cohen C.D., Hindmarsh A.C. 1996. CVODE, A Stiff/Nonstiff ODE Solver in C. Computers in Physics. 10 (2), 138–143.
  53. Doedel E.J., Paffenroth R.C., Champneys A.R., Fairgrieve T.F., Kuznetsov Y.A., Sandstede B., Wang X. 2001. AUTO 2000: Continuation and bifurcation software for ordinary differential equations (with HomCont). Technical Report, California Institute of Technology, Pasadena, CA 91125, USA.
  54. Goldberg R.N., Tewari Y.B. 1995. Thermodynamics of enzyme-catalyzed reactions: Part 4. Lyases. J. Phys. Chem. Re.f Data. 24 (5), 1669–1698. doi: 10.1063/1.555969.
  55. Hoorn R.K.J., Flikweert J.P., Staal G.E.J. 1974. Purification and properties of enolase of human erythrocytes. Int. J. Biochem. 5 (11–12), 845–852. doi: 10.1016/0020–711X(74)90119–0.
  56. Wold F., Ballou C.E. 1957. Studies on the enzyme enolase. II. Kinetic studies. J. Biol. Chem. 227 (1), 313–328.
  57. Goldberg R.N., Tewari Y.B. 1995. Thermodynamics of enzyme-catalyzed reactions: Part 5. Isomerases and ligases. J. Phys. Chem. Ref.Data. 24 (6), 1765–7801. doi: 10.1063/1.555970.
  58. Scopes R.K., Newbold R.P. 1968. Post-mortem glycolysis in ox skeletal muscle. Effect of pre-rigor freezing and thawing on the intermediary metabolism. Biochem. J. 109 (2), 197–202. doi: 10.1042/bj1090197.
  59. Dohm G.L., Patel V.K., Kasperek G.J. 1986. Regulation of muscle pyruvate metabolism during exercise. Biochem. Med. Metab. Biol. 35 (3), 260–266. doi: 10.1016/0885–4505(86)90081–2.
  60. Bissonnette D.J., Jeejeebhoy K.N. 1998. Feeding a low energy diet and refeeding a control diet affect glycolysis differently in the slow- and fast-twitch muscles of adult male wistar rats. J. Nutr. 128 (10), 1723–1730. doi: 10.1093/jn/128.10.1723.
  61. Veech R.L., Raijman L., Dalziel K., Krebs H.A. 1969. Disequilibrium in the triose phosphate isomerase system in rat liver. Biochem. J. 115 (4), 837–842. doi: 10.1042/bj1150837.
  62. Hagopian K., Tomilov A.A., Kim K., Cortopassi G.A., Ramsey J.J. 2015. Key glycolytic enzyme activities of skeletal muscle are decreased under fed and fasted states in mice with knocked down levels of Shc proteins. PLoS One. 10 (4), e0124204. doi: 10.1371/journal.pone.0124204.
  63. Goldberg R.N., Tewari Y.B. 1994. Thermodynamics of enzyme-catalyzed reactions: Part 2. Transferases. J. Phys. Chem. Ref. Data. 23 (4), 547–617. doi: 10.1063/1.555948.
  64. Cornell N.W., Leadbetter M., Veech R.L. 1979. Effects of free magnesium concentration and ionic strength on equilibrium constants for the glyceraldehyde phosphate dehydrogenase and phosphoglycerate kinase reactions. J. Biol. Chem. 254 (14), 6522–6527.
  65. Goldberg R.N., Tewari Y.B., Bell D., Fazio K., Anderson E. 1993. Thermodynamics of enzyme-catalyzed reactions: Part 1. Oxidoreductases. J. Phys. Chem. Ref. Data. 22 (2), 515–582. doi: 10.1063/1.555939.
  66. Goldberg R.N., Tewari Y.B. 1995. Thermodynamics of enzyme-catalyzed reactions: Part 5. Isomerases and ligases. J. Phys. Chem. Re.f Data. 24 (6), 1765–1801. doi: 10.1063/1.555970.
  67. Drewes L.R., Gilboe D.D. 1973. Glycolysis and the permeation of glucose and lactate in the isolated, perfused dog brain during anoxia and postanoxic recovery. J. Biol. Chem. 248 (7), 2489–2496.
  68. Eber S.W., Pekrun A., Bardosi A., Gahr M., Krietsch W.K.G., Krüger J., Matthei R., Schröter W. 1991. Triosephosphate isomerase deficiency: Haemolytic anaemia, myopathy with altered mitochondria and mental retardation due to a new variant with accelerated enzyme catabolism and diminished specific activity. Eur. J. Pediatr. 150 (11), 761–766. doi: 10.1007/BF02026706.
  69. Rijksen G., Staal G.E. 1978. Human erythrocyte hexokinase deficiency. Characterization of a mutant enzyme with abnormal regulatory properties. J. Clin. Invest. 62 (2), 294–301. doi: 10.1172/JCI109129.
  70. Minakami S., Suzuki C., Saito T., Yoshikawa H. 1965. Studies on erythrocyte glycolysis I. Determination of the glycolytic intermediates in human erythrocytes. J. Biochem. 58 (6), 543–550. doi: 10.1093/oxfordjournals.jbchem.a128240.
  71. Lim W.A., Raines R.T., Knowles J.R. 1988. Triosephosphate isomerase catalysis is diffusion controlled. Appendix: Analysis of triose phosphate equilibria in aqueous solution by phosphorus-31 NMR. Biochemistry. 27 (4), 1165–1167. doi: 10.1021/bi00404a014.
  72. Katz A., Broberg S., Sahlin K., Wahren J. 1986. Leg glucose uptake during maximal dynamic exercise in humans. Am. J. Physiol.-Endocrin. Metab. 251 (1), E65–E70. doi: 10.1152/ajpendo.1986.251.1.E65.
  73. Sahlin K., Katz A., Henriksson J. 1987. Redox state and lactate accumulation in human skeletal muscle during dynamic exercise. Biochem. J. 245 (2), 551–556. doi: 10.1042/bj2450551.
  74. Baker J.S., McCormick M.C., Robergs R.A. 2010. Interaction among skeletal muscle metabolic energy systems during intense exercise. J. Nutr. Metab. 2010, 1–13. doi: 10.1155/2010/905612.
  75. Ataullakhanov F.I., Vitvitsky V.M., Zhabotinsky A.M., Pichugin A.V, Platonova O.V, Kholodenko B.N., Ehrlich L.I. 1981. The regulation of glycolysis in human erythrocytes. The dependence of the glycolytic flux on the ATP concentration. Eur. J. Biochem. 115 (2), 359–365. doi: 10.1111/j.1432–1033.1981.tb05246.x.
  76. Hall E.R., Larry Cottam G. 1978. Isozymes of pyruvate kinase in vertebrates: Their physical, chemical, kinetic and immunological properties. Int. J. Biochem. 9 (11), 785–794. doi: 10.1016/0020–711X(78)90027–7.
  77. Zammit V.A., Beis I., Newsholme E.A. 1978. Maximum activities and effects of fructose bisphosphate on pyruvate kinase from muscles of vertebrates and invertebrates in relation to the control of glycolysis. Biochem. J. 174 (3), 989–998. doi: 10.1042/bj1740989.
  78. Phillips F.C., Ainsworth S. 1977. Allosteric properties of rabbit muscle pyruvate kinase. Int. J. Biochem. 8 (10), 729–735. doi: 10.1016/0020–711X(77)90070–2.
  79. Guguen-Guillouzo C., Szajnert M.-F., Marie J., Delain D., Schapira F. 1977. Differentiation in vivo and in vitro of pyruvate kinase isozymes in rat muscle. Biochimie. 59 (1), 65–71. doi: 10.1016/S0300–9084(77)80087–4.
  80. Harris W., Days R., Johnson C., Finkelstein I., Stallworth J., Hubert C. 1977. Studies on avian heart pyruvate kinase during development. Biochem. Biophys. Res. Commun. 75 (4), 1117–1121. doi: 10.1016/0006–291X(77)91498-X.
  81. Jensen K.K., Geoghagen N.S., Jin L., Holt T.G., Luo Q., Malkowitz L., Ni W., Quan S., Waters M.G., Zhwang A., Zhou H.H., Cheng K., Luo M.-J. 2011. Pharmacological activation and genetic manipulation of cystathionine beta-synthase alter circulating levels of homocysteine and hydrogen sulfide in mice. Eur. J. Pharmacol. 650 (1), 86–93. doi: 10.1016/j.ejphar.2010.09.080.
  82. Yuan X., Liu Y., Bijonowski B.M., Tsai A.-C., Fu Q., Logan T.M., Ma T., Li Y. 2020. NAD + /NADH redox alterations reconfigure metabolism and rejuvenate senescent human mesenchymal stem cells in vitro. Commun. Biol. 3 (1), 774. doi: 10.1038/s42003–020–01514-y.
  83. Pan X., Heacock M.L., Abdulaziz E.N., Violante S., Zuckerman A.L., Shrestha N., Yao C., Goodman R.P., Cross J.R., Cracan V. 2024. A genetically encoded tool to increase cellular NADH/ NAD + ratio in living cells. Nat. Chem. Biol. 20 (5), 594–604. doi: 10.1038/s41589–023–01460-w.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Biochemical reactions included in the model. The following designations for enzymes and metabolites were used in the work: AK – adenylate kinase, ALD – aldolase, ATPase – the sum of ATP-consuming processes, excluding hexokinase and phosphofructokinase reactions, ENO – enolase, GAPDH – glyceraldehyde phosphate dehydrogenase, GPI – glucose phosphate isomerase, HK – hexokinase, PK – pyruvate kinase, PFK – phosphofructokinase, PGK – phosphoglycerate kinase, PGM – phosphoglycerate mutase, TPI – triosephosphate isomerase, 1,3-DPG – 1,3-diphosphoglycerate, 2-PG – 2-phosphoglycerate, 3-PG – 3-phosphoglycerate, DAP – dihydroxyacetone phosphate, F6P – fructose-6-phosphate, FDP – fructose-1,6-diphosphate, G6P – glucose-6-phosphate, GAP – glyceraldehyde phosphate, GLU – glucose, PEP – phosphoenolpyruvate. The dotted arrow shows the production of G6P from glycogen at a rate of VGLY.

Download (136KB)
3. Fig. 2. Effect of pyruvate kinase activation by fructose-1,6-diphosphate on the rate of ATP production in the model during stimulation of muscle work. a, b – Relationship between the rate of G6P production from glycogen (VGLY) and the steady-state rate of ATP production during stimulation of muscle work in the model with PK independent of FDP (a) and with PK activated by FDP (b). c, d – Dependence of steady-state concentrations of glycolytic metabolites on the rate of ATP production in the model with PK independent of FDP (c) and with PK activated by FDP (d). Stimulation of muscle work is considered as an increase in the rate of ATP consumption. The graphs show steady-state values ​​of rates and concentrations. Therefore, in all cases, the rates of ATP production and consumption are equal.

Download (177KB)

Copyright (c) 2025 The Russian Academy of Sciences