Positive Effect of YB-1 and Mesenchymal Stromal Cells on Primary Hippocampal Culture under Conditions of ACE2 Receptor Blockade

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Although the current COVID-19 incidence situation is not an emergency, more new strains of SARS-CoV-2 coronavirus continue to emerge worldwide, some of which are more virulent than the original virus. Studies have shown that patients with Alzheimer's disease (AD) had a high risk of severe COVID-19, but the molecular and cellular mechanism of this predisposition is not fully elucidated. In this study, we developed a cellular model of the initial stage of COVID-19 on primary hippocampal culture of 5xFAD mice, a familial AD model, using a specific ACE2 receptor inhibitor, MLN-4760. This model is based on the experimentally proven decrease in ACE2 receptor activity observed in COVID-19 patients due to internalization of the receptor inside the cell after binding to coronavirus. Using immunochemical staining with specific antibodies to detect neurons (marker MAP2) and astroglia (marker GFAP), it was found that 24 h after the addition of MLN-4760 (0.2 nmol per 1 mL of medium) to the culture medium, there was a decrease in the density of astrocytes and neurons, a change in their morphology with a sharp reduction in the length and density of neurites, which led to the death of the cell culture. The transgenic culture was more sensitive to the effect of the inhibitor compared to the control hippocampal culture of native mice. In the second part of the study the possibilities of preventing the destructive effect of MLN-4760 on the hippocampal culture condition were studied. It was shown that administration of YB-1, an endogenous polyfunctional stress protein, promoted restoration of cell culture structure and resulted in stimulation of neurite growth and astroglia activation. Introduction of multipotent mesenchymal stromal cells (MMSCs) after ACE2 blockade was also accompanied by improved culture survival, restoration of cell morphology, and increased density of astrocytes and neurons. The obtained results indicate that YB-1 and cell therapy using MMSCs are promising options for the development of new effective methods to prevent the pathological effect of the virus on brain tissue, which is an important link in the treatment of infection caused by SARS-CoV-2 virus.

Texto integral

Acesso é fechado

Sobre autores

D. Zhdanova

Institute of Cell Biophysics, Pushchino Scientific Center for Biological Research, Russian Academy of Sciences

Autor responsável pela correspondência
Email: ddzhdanova@mail.ru
Rússia, Pushchino, 142290

A. Chaplygina

Institute of Cell Biophysics, Pushchino Scientific Center for Biological Research, Russian Academy of Sciences

Email: ddzhdanova@mail.ru
Rússia, Pushchino, 142290

N. Bobkova

Institute of Cell Biophysics, Pushchino Scientific Center for Biological Research, Russian Academy of Sciences

Email: ddzhdanova@mail.ru
Rússia, Pushchino, 142290

R. Poltavtseva

National Medical Research Center for Obstetrics, Gynecology, and Perinatology named after Academician V.I. Kulakov, Ministry of Healthcare of the Russian Federation

Email: ddzhdanova@mail.ru
Rússia, Moscow, 117997

G. Sukhikh

National Medical Research Center for Obstetrics, Gynecology, and Perinatology named after Academician V.I. Kulakov, Ministry of Healthcare of the Russian Federation

Email: ddzhdanova@mail.ru
Rússia, Moscow, 117997

Bibliografia

  1. Akhtar A., Singh S., Kaushik R., Awasthi R., Behl T. 2024. Types of memory, dementia, Alzheimer’s disease, and their various pathological cascades as targets for potential pharmacological drugs. Ageing Res. Rev. 96, 102289.
  2. Gholami A. 2023. Alzheimer's disease: The role of proteins in formation, mechanisms, and new therapeutic approaches. Neurosci. Lett. 817, 137532.
  3. Singh M. K., Shin Y., Ju S., Han S., Kim S.S., Kang I. 2024. Comprehensive overview of Alzheimer’s disease: Etiological insights and degradation strategies. Int. J. Mol. Sci. 25, 6901.
  4. Tyagi K., Rai P., Gautam A., Kaur H., Kapoor S., Suttee A., Jaiswal P. K., Sharma A., Singh G., Barnwal R.P. 2023. Neurological manifestations of SARS-CoV-2: Complexity, mechanism and associated disorders. Eur. J. Med. Res. 28, 307.
  5. Swain S. P., Mahanta C.S., Maurya M., Mandal D., Parihar V., Ravichandiran V. 2024. Exploring SK/S1P/S1PR pathway as a target for antiviral drug development. Health Sciences Review. 11, 100177.
  6. Fan C., Wu Y., Rui X., Yang Y., Ling C., Liu S., Liu S., Wang Y. 2022. Animal models for COVID-19: Advances, gaps and perspectives. Signal Transduct. Target. Ther. 7, 220.
  7. Belotserkovskaya Y.G., Romanovskikh A.G., Smirnov I.P., Sinopalnikov, A.I. 2021. Long COVID-19. Consilium medicum, 23, 261–268.
  8. Hu C., Chen C., Dong X.P. 2021. Impact of COVID-19 pandemic on patients with neurodegenerative diseases. Front. Aging Neurosci. 13, 664965.
  9. Pulliam L., Sun B., McCafferty E., Soper S.A., Witek M.A., Hu M., Ford J.M., Song S., Kapogiannis D., Glesby M.J., Merenstein D., Tien P.C., Freasier H., French A., McKay H., Diaz M.M., Ofotokun I., Lake J.E., Margolick J.B., Kim E.-Y., Levine S.R., Fischl M.A., Li W., Martinson J., Tang, N. 2024. Microfluidic isolation of neuronal-enriched extracellular vesicles shows distinct and common neurological proteins in long COVID, HIV infection and Alzheimer’s disease. Int. J. Mol. Sci. 25, 3830.
  10. Rudnicka-Drożak E., Drożak P., Mizerski G., Zaborowski T., Ślusarska B., Nowicki G., Drożak M. 2023. Links between COVID-19 and Alzheimer’s disease – What do we already know? Int. J. Environ. Res. Public Health. 20, 2146.
  11. Griggs E., Trageser K., Naughton S., Yang E.J., Mathew B., Van Hyfte G., Hellmers L., Jette N., Estill M., Shen L., Fischer T., Pasinetti G. M. 2023. Recapitulation of pathophysiological features of AD in SARS-CoV-2-infected subjects. Elife. 12, e86333.
  12. Xia X., Wang Y., Zheng J. 2021. COVID-19 and Alzheimer’s disease: How one crisis worsens the other. Transl. Neurodegener. 10, 15.
  13. Gkouskou K., Vasilogiannakopoulou T., Andreakos E., Davanos N., Gazouli M., Sanoudou D., Eliopoulos A. G. 2021. COVID-19 enters the expanding network of apolipoprotein E4-related pathologies. Redox Biol. 41, 101938.
  14. Kotsev S. V., Miteva D., Krayselska S., Shopova M., Pishmisheva-Peleva M., Stanilova S. A., Velikova T. 2021. Hypotheses and facts for genetic factors related to severe COVID-19. World J. Virol. 10, 137.
  15. Naughton S. X., Raval U., Pasinetti G. M. 2020. Potential novel role of COVID-19 in Alzheimer’s disease and preventative mitigation strategies. J. Alzheimers Dis. 76, 21–25.
  16. Bobkova N.V. 2021. The balance between two branches of RAS can protect from severe COVID-19 course. Biochemistry (Moscow), Supplement Series A: Membrane and Cell Biology. 15, 36–51.
  17. Alenina N., Bader M. 2019. ACE2 in brain physiology and pathophysiology: Evidence from transgenic animal models. Neurochem. Res. 44, 1323–1329.
  18. Mahajan S., Sen D., Sunil A., Srikanth P., Marathe S. D., Shaw K., Sahare M., Galande S., Abraham N.M. 2023. Knockout of angiotensin converting enzyme-2 receptor leads to morphological aberrations in rodent olfactory centers and dysfunctions associated with sense of smell. Front. Neurosci. 17, 1180868.
  19. Panariello F., Cellini L., Speciani M., De Ronchi D., Atti A. R. 2020. How does SARS-CoV-2 affect the central nervous system? A working hypothesis. Front. Psychiatry. 11, 582345.
  20. Saikarthik J., Saraswathi I., Al-Atram A. A. 2022. Does COVID-19 affect adult neurogenesis? A neurochemical perspective. In: Recent advances in neurochemistry. Eds Heinbockel T., Weissert R. UK: Intechopen, p. 134.
  21. Gross L.Z., Sacerdoti M., Piiper A., Zeuzem S., Leroux A. E., Biondi R. M. 2020. ACE2, the receptor that enables infection by SARS‐CoV‐2: Biochemistry, structure, allostery and evaluation of the potential development of ACE2 modulators. ChemMedChem. 15, 1682–1690.
  22. Reveret L., Leclerc M., Emond V., Tremblay C., Loiselle A., Bourassa P., Bennett D.A., Hébert S.S., Calon F. 2023. Higher angiotensin-converting enzyme 2 (ACE2) levels in the brain of individuals with Alzheimer’s disease. Acta Neuropathol. Commun. 11, 159.
  23. Komatsu T., Suzuki Y., Imai J., Sugano S., Hida M., Tanigami A., Muroi S., Yamada Y., Hanaoka K. 2002. Molecular cloning, mRNA expression and chromosomal localization of mouse angiotensin-converting enzyme-related carboxypeptidase (mACE2). DNA Sequence, 13, 217–220.
  24. Staroverov V., Galatenko A., Knyazev E., Tonevitsky A. 2024. Mathematical model explains differences in Omicron and Delta SARS-CoV-2 dynamics in Caco-2 and Calu-3 cells. PeerJ. 12, e16964.
  25. Ye M., Wysocki J., Gonzales-Pacheco F.R., Salem M., Evora K., Garcia-Halpin L., Poglitsch M., Schuster M., Batlle D. 2012. Murine Recombinant ACE2: Effect on angiotensin II dependent hypertension and distinctive ACE2 inhibitor characteristics on rodent and human ACE2. Hypertension. 60, 730.
  26. Clever S., Volz A. 2023. Mouse models in COVID-19 research: Analyzing the adaptive immune response. Med. Microbiol. Immunol. 212, 165–183.
  27. Бобкова Н.В., Полтавцева Р.А., Самохин А.Н., Сухих Г.Т. 2013. Терапевтический эффект мезенхимальных мультипотентных стромальных клеток на память животных с нейродегенерацией альцгеймеровского типа. Клеточные технологии в биологии и медицине. 3, 123–126.
  28. Bobkova N.V., Lyabin D.N., Medvinskaya N.I., Samokhin A.N., Nekrasov P.V., Nesterova I.V., Aleksandrova I.Y., Tatarnikova O.G., Bobylev A.G., Vikhlyantsev I.M., Kukharsky M.S., Ustyugov A.A., Polyakov D.N., Eliseeva I.A., Kretov D.A., Guryanov S G., Ovchinnikov L.P. 2015. The Y-box binding protein 1 suppresses Alzheimer’s disease progression in two animal models. PLoS One. 10, e0138867.
  29. Chaplygina A.V., Zhdanova D.Y., Kovalev V.I., Poltavtseva R.A., Medvinskaya N.I., Bobkova N.V. 2022. Cell therapy as a way to correct impaired neurogenesis in the adult brain in a model of Alzheimer’s disease. J. Evol. Biochem. Physiol. 58, 117–137.
  30. Жданова Д.Ю., Полтавцева Р.А., Свирщевская Е.В., Бобкова, Н.В. 2020. Влияние интраназального введения экзосом мультипотентных мезенхимных стромальных клеток на память у мышей в модели болезни Альцгеймера. Клеточные технологии в биологии и медицине. 4, 289–296.
  31. Oakley H., Cole S.L., Logan S., Maus E., Shao P., Craft J., Vassar R. 2006. Intraneuronal β-amyloid aggregates, neurodegeneration, and neuron loss in transgenic mice with five familial Alzheimer's disease mutations: potential factors in amyloid plaque formation. Eur. J. Neurosci. 26, 10129–10140.
  32. Kimura R., Ohno M. 2009. Impairments in remote memory stabilization precede hippocampal synaptic and cognitive failures in 5XFAD Alzheimer mouse model. Neurobiol. Dis. 33, 229–235.
  33. Peters O.M., Shelkovnikova T., Tarasova T., Springe S., Kukharsky M.S., Smith G.A. 2013. Chronic administration of Dimebon does not ameliorate amyloid-beta pathology in 5xFAD transgenic mice. J. Alzheimers Dis. 36, 589–596.
  34. Papasozomenos S.C., Binder L.I. 1986. Microtubule-associated protein 2 (MAP2) is present in astrocytes of the optic nerve but absent from astrocytes of the optic tract. J. Neurosci. 6, 1748–1756.
  35. Geisert Jr.E.E., Johnson H.G., Binder L.I. 1990. Expression of microtubule-associated protein 2 by reactive astrocytes. PNAS. 87, 3967–3971.
  36. Muñoz-Fontela C., Widerspick L., Albrecht R.A., Beer M., Carroll M. W., de Wit E., Diamond M.S., Dowling W.E., Funnell S.G.P., García-Sastre A., Gerhards N.M., Jong R., Munster V.J., Neyts J., Perlman S., Reed D.S., Richt J.A., Riveros-Balta X., Roy C.J., Salguero F.J., Schotsaert M., Schwartz L.M., Seder R.A., Segalés J., Vasan S.S., Henao-Restrepo A.M., Barouch D.H. 2022. Advances and gaps in SARS-CoV-2 infection models. PLoS Pathog. 18, e1010161.
  37. Caly L., Druce J.D., Catton M.G., Jans D.A., Wagstaff K.M. 2020. The FDA approved drug ivermectin inhibits the replication of SARS-CoV-2 in vitro. Antivir. Res. 178, 104787
  38. Wyler E., Msbauer K., Franke V., Diag A., Landthaler M. 2021. Bulk and single-cell gene expression profiling of SARS-CoV-2 infected human cell lines identifies molecular targets for therapeutic intervention. iScience. 24, 102151
  39. Huang J., Song W., Huang H., Sun Q. 2020. Pharmacological therapeutics targeting RNA-dependent RNA polymerase, proteinase and spike protein: from mechanistic studies to clinical trials for COVID-19. J. Clin. Med. 9, 1131.
  40. Shajahan A., Archer-Hartmann S., Supekar N. T., Gleinich A. S., Heiss C., Azadi P. 2021. Comprehensive characterization of N-and O-glycosylation of SARS-CoV-2 human receptor angiotensin converting enzyme 2. Glycobiology. 31, 410–424.
  41. Yinda C. K., Port J.R., Bushmaker T., Offei Owusu I., Purushotham J.N., Avanzato V.A., Fischer R.J., Schulz J.E., Holbrook M.G., Hebner M.J., Rosenke R., Thomas T., Marzi A., Best S.M., de Wit E., Shaia C., Doremalen N., Munster V.J. 2021. K18-hACE2 mice develop respiratory disease resembling severe COVID-19. PLoS Pathog. 17, e1009195.
  42. Zheng J., Wong L.Y.R., Li K., Verma A. K., Ortiz M. E., Wohlford-Lenane C., Leidinger M. R., Knudson C. M., Meyerholz D. K., McCray Paul B., Perlman S. 2021. COVID-19 treatments and pathogenesis including anosmia in K18-hACE2 mice. Nature. 589, 603–607.
  43. Bao L., Deng W., Huang B., Gao H., Liu J., Ren L., Wei Q., Yu P., Xu Y., Qi F., Qu Y., Li F., Lv Q., Wang W., Xue J., Gong S., Liu M., Wang G., Wang S., Song Z., Zhao L., Liu P., Zhao L., Ye F., Wang H., Zhou W., Zhu N., Zhen W., Yu H., Zhang X., Guo L., Chen L., Wang C., Wang Y., Wang X., Xiao Y., Sun Q., Liu H., Zhu F., Ma C., Yan L., Yang M., Han J., Xu W., Tan W., Peng X., Jin Q., Wu G., Qin, C. 2020. The pathogenicity of SARS-CoV-2 in hACE2 transgenic mice. Nature. 583, 830–833.
  44. Wu Y., Wang F., Shen C., Peng W., Liu L. 2020. A noncompeting pair of human neutralizing antibodies block COVID-19 virus binding to its receptor ACE2. Science. 368, eabc2241
  45. Wang C.W., Chuang H.C., Tan T.H. 2023. ACE2 in chronic disease and COVID-19: Gene regulation and post-translational modification. J. Biomed. Sci. 30, 71.
  46. Garg M., Royce S.G., Tikellis C., Shallue C., Batu D., Velkoska E., Burrell L.M., Patel S.K., Beswick L., Jackson A., Britto K., Lukies M., Sluka P., Wardan H., Hirokawa Y., Tan C.W., Faux M., Burgess A.W., Hosking P., Monagle S., Thomas M., Gibson P.R., Lubel J. 2020. Imbalance of the renin-angiotensin system may contribute to inflammation and fibrosis in IBD: A novel therapeutic target? Gut. 69, 841–851.
  47. Delpino M.V., Quarleri J. 2020. SARS-CoV-2 pathogenesis: Imbalance in the renin-angiotensin system favors lung fibrosis. Front. Cell. Infect. Microbiol. 10, 340.
  48. Gao Y. L., Du Y., Zhang C., Cheng C., Yang H. Y., Jin Y.F., Duan G-C., Chen S.Y. 2020. Role of renin-angiotensin system in acute lung injury caused by viral infection. Infect. Drug Resist. 13, 3715–3725.
  49. Chen R., Wang K., Yu J., Howard D., French L., Chen Z., Wen C., Xu Z. 2021. The spatial and cell-type distribution of SARS-CoV-2 receptor ACE2 in the human and mouse brains. Front. Neurol. 11, 573095.
  50. Qiao J., Li W., Bao J., Peng Q., Wen D., Wang J., Sun B. 2020. The expression of SARS-CoV-2 receptor ACE2 and CD147, and protease TMPRSS2 in human and mouse brain cells and mouse brain tissues. Biochem. Biophys. Res. Commun. 533, 867–871.
  51. Xu J., Lazartigues E. 2022. Expression of ACE2 in human neurons supports the neuro-invasive potential of COVID-19 virus. Cell Mol Neurobiol. 42, 305–309.
  52. Morgun A.V., Salmin V.V., Boytsova E.B., Lopatina O.L., Salmina, A. B. 2020. Molecular mechanisms of proteins—targets for SARS-CoV-2. Современные технологии в медицине. 12 (6), 98–108.
  53. Netland J., Meyerholz D.K., Moore S., Cassell M., Perlman S. 2008. Severe acute respiratory syndrome coronavirus infection causes neuronal death in the absence of encephalitis in mice transgenic for human ACE2. J. Virol. 82, 7264–7275.
  54. Scoppettuolo P., Borrelli S., Naeije G. 2020. Neurological involvement in SARS-CoV-2 infection: A clinical systematic review. Brain Behav. Immun. Health. 5, 100094.
  55. Song E., Zhang C., Israelow B., Lu-Culligan A., Prado A.V., Skriabine S., Lu P., Weizman O.E., Liu F., Dai Y., Szigeti-Buck K., Yasumoto Y., Wang G., Castaldi C., Heltke J., Ng E., Wheeler J., Alfajaro M.M., Levavasseur E., Fontes B., Ravindra N.G., Van Dijk D., Mane S., Gunel M, Ring A., Kazmi S.A.J., Zhang K., Wilen C.B., Horvath T.L., Plu I., Haik S., Thomas J.L., Louvi A., Farhadian S.F., Huttner A., Seilhean D., Renier N., Bilguvar K., Iwasaki A. 2021. Neuroinvasion of SARS-CoV-2 in human and mouse brain. J. Exp. Med. 218, e20202135.
  56. Agulhon C., Petravicz J., McMullen A.B., Sweger E.J., Minton S.K., Taves S.R., Casper K.B., Fiacco T.A., McCarthy K.D. 2008. What is the role of astrocyte calcium in neurophysiology? Neuron. 59, 932–946.
  57. Mitroshina E.V., Pakhomov A.M., Krivonosov M.I., Yarkov R.S., Gavrish M.S., Shkirin A.V., Ivanchenko M.V., Vedunova M.V. 2022. Novel algorithm of network calcium dynamics analysis for studying the role of astrocytes in neuronal activity in Alzheimer's disease models. Int J Mol Sci. 23, 15928.
  58. Calvo-Rodríguez M., de la Fuente C., García-Durillo M., García-Rodríguez C., Villalobos C., Núñez L. 2017. Aging and amyloid β oligomers enhance TLR4 expression, LPS-induced Ca2+ responses, and neuron cell death in cultured rat hippocampal neurons. J Neuroinflammation. 14, 24.
  59. Calvo-Rodríguez M., García-Durillo M., Villalobos C., Núñez L. 2016. Aging enables Ca2+ overload and apoptosis induced by amyloid-β oligomers in rat hippocampal neurons: Neuroprotection by non-steroidal anti-inflammatory drugs and R-flurbiprofen in aging neurons. J. Alzheimers Dis. 54, 207–221.
  60. Елисеева И.А., Ким Е.Р., Гурьяно, С.Г., Овчинников Л.П., Лябин, Д.Н. 2011. Y-бокс-связывающий белок 1 (YB-1) и его функции. Успехи биол. химии. 51, 65–163.
  61. Stavrovskaya A., Stromskaya T., Rybalkina E., Moiseeva N., Vaiman A., Guryanov S., Ovchinnikov L., Guens, G. 2012. YB-1 protein and multidrug resistance of tumor cells. Curr. Signal Transduct. Ther. 7, 237–246.
  62. Steardo L., Steardo L.Jr., Zorec R., Verkhratsky A. 2020. Neuroinfection may contribute to pathophysiology and clinical manifestations of COVID-19. Acta Physiol. (Oxf). 229, e13473.
  63. Esquivel D., Mishra R., Soni P., Seetharaman R., Mahmood A., Srivastava A. 2021. Stem cells therapy as a possible therapeutic option in treating COVID-19 patients. Stem cell reviews and reports. 17, 144–152.
  64. Musial C., Gorska-Ponikowska M. 2021. Medical progress: Stem cells as a new therapeutic strategy for COVID-19. Stem Cell Research. 52, 102239.
  65. Kebria M.M., Milan P. B., Peyravian N., Kiani J., Khatibi S., Mozafari M. 2022. Stem cell therapy for COVID-19 pneumonia. Mol. Biomed. 3, 6.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Effect of ACE2 inhibitor on the area of immunopositive staining of astrocyte marker (GFAP - green) and neuronal marker (MAP2 - red) in primary cell cultures of hippocampus of nontransgenic (nTg) and transgenic (Tg) mice. a - Native primary culture of hippocampus of nTg mouse (nTg). b - Effect of MLN-4760 on native primary culture of hippocampus of nTg mouse (nTg MLN). c - Native primary culture of hippocampus of Tg mouse 5xFAD (Tg). d - Effect of MLN-4760 on primary culture of hippocampus of Tg mouse 5xFAD (Tg MLN). e - Neuron and astrocyte density (in %). * p < 0.05, one-factor ANOVA followed by Dunn's posttests. Scale bar is 250 μm.

Baixar (758KB)
3. Fig. 2. Structural changes of astrocytes (GFAP - green) and neurons (MAP2 - red) in primary nTg hippocampal cell cultures after MLN-4760 action. nTg - Native primary hippocampal cell culture. MLN - Effect of MLN-4760 on primary hippocampal cultures. Scale bar - 125 μm.

Baixar (437KB)
4. Fig. 3. Positive effect of YB-1 on neuronal and astrocyte density in cultures of Tg and nTg mice exposed to ACE2 blocker. Immunopositivity to an astrocyte marker (GFAP in green) and a neuronal marker (MAP2 in red). a - Effect of YB-1 on nTg culture exposed to ACE2 blocker (nTg). b - Effect of YB-1 on Tg culture exposed to ACE2 blocker (Tg). c - Neuronal and astrocyte density (in %) in nTg culture in the absence of MLN-4760 (nTg), under the influence of MLN-4760 (MLN), after the effect of YB-1 (MLN + YB-1). d - Neuronal and astrocyte density (in %) in 5xFAD Tg culture in the absence of MLN-4760 (nTg), under the influence of MLN-4760 (MLN), after the effect of YB-1 (MLN + YB-1). * p < 0.05, one-factor ANOVA followed by Dunn's posttests. Scale bar is 250 μm.

Baixar (488KB)
5. Fig. 4. Effect of YB-1 administration on neurons (MAP2 - red) and astrocytes (GFAP - green) in primary nTg neuroglial cultures of hippocampus exposed to MLN-4760. Scale bar is 125 μm.

Baixar (216KB)
6. Fig. 5. Effect of MMSCs on neurons (MAP2 - red) and astrocytes (GFAP - green) in nTg hippocampal cell culture exposed to MLN-4760. Scale bar is 125 μm.

Baixar (220KB)
7. Fig. 6. Effect of MMSCs (MMSC nuclei - blue) on immunopositivity of astrocytes (marker GFAP - green) and neurons (marker MAP2 - red) in primary hippocampal cultures of nTg and Tg mice. a - MMSCs were injected into nTg culture after ACE2 inhibition. b - MMSCs were injected into Tg culture 5xFAD after ACE2 inhibition. c - Density of neurons and astrocytes (in %) in nTg culture in the absence of MLN-4760 (nTg), under the influence of MLN-4760 (MLN), after the action of MMSCs (MLN + MMSCs). d - Neuronal and astrocyte density (in %) in 5xFAD Tg culture in the absence of MLN-4760 (Tg), under the influence of MLN-4760 (MLN), after the action of MMSCs (MLN + MMSCs).** p < 0.001, one-factor ANOVA followed by Bonferroni posttests. * p < 0.05, one-factor ANOVA followed by Dunn's posttests. Scale bar was 250 μm.

Baixar (385KB)

Declaração de direitos autorais © The Russian Academy of Sciences, 2025