Electrical conductivity of salt melts, containing zirconium tetrachloride
- Authors: Salyulev A.B.1, Potapov А.M.1
-
Affiliations:
- Institute of High‒Temperature Electrochemistry, Ural Branch of the Russian Academy of Sciences
- Issue: No 2 (2025)
- Pages: 161-175
- Section: Articles
- URL: https://gynecology.orscience.ru/0235-0106/article/view/680925
- DOI: https://doi.org/10.31857/S0235010625020076
- ID: 680925
Cite item
Abstract
The present paper presents an overview of the available experimental data (both our data and provided by other researchers) on the electrical conductivity of ZrCl₄–containing salt melts, for which the saturated vapor pressure of ZrCl₄ above them is P ⩽ 1 atm. These melts have a significant practical application potential. Such mixtures are divided into high‒temperature mixtures with a ZrCl₄ concentration of 0‒30 mol. %, and low‒temperature ones, with a narrower ZrCl₄ content range of 50‒75 mol. %. Based on the obtained experimental data it was found that the electrical conductivity of all molten ZrCl₄–containing mixtures increases as the temperature increases, zirconium tetrachloride concentration decreases, and the molten solvent salt is replaced in the row from CsCl to LiCl. The experimental data obtained are summarized and discussed taking into account the available information on the structure of the molten mixtures. Electrical conductivity of high–temperature MCl‒ZrCl₄ melts (0‒30 mol. % ZrCl₄; M is an alkali metal), is in the range of 0.6–3.1 Cm/cm, which is significantly higher than the electrical conductivity of low–melting molten mixtures of the same chlorides (0.1‒0.5 Cm/cm) with a high content of ZrCl₄ (55‒75 mol. %). It has been found that the use of low‒melting salt solvents, for example, LiCl–KCl eutectic, makes it possible to expand the range of existence of ZrCl₄‒containing melts by hundreds of degrees towards lower temperatures and saturated vapor pressures at sufficiently high values of electrical conductivity (0.9–2.8 Cm/cm). This provides additional advantages for the organization of various technological processes.
Full Text

About the authors
A. B. Salyulev
Institute of High‒Temperature Electrochemistry, Ural Branch of the Russian Academy of Sciences
Author for correspondence.
Email: salyulev@mail.ru
Russian Federation, Yekaterinburg
А. M. Potapov
Institute of High‒Temperature Electrochemistry, Ural Branch of the Russian Academy of Sciences
Email: salyulev@mail.ru
Russian Federation, Yekaterinburg
References
- Morozov I.S. Primeneniye khlora v metallurgii redkikh i tsvetnykh metallov [Application of chlorine in metallurgy of rare and non‒ferrous metals]. M.: Nauka. 1966. [In Russian].
- Nekhamkin L.G., Ed. Metallurgiya tsirkoniya i gafniya [Metallurgy of zirconium and hafnium]. M.: Metallurgiya. 1979. [In Russian].
- Drobot D.V., Lysakova E.I., Reznik A.M. Izbrannyye glavy khimii i tekhnologii redkikh i rasseyannykh elementov. Khimiya i tekhnologiya tsirkoniya i gafniya [Selected chapters of chemistry and technology of rare and trace elements. Chemistry and technology of zirconium and hafnium]. M.: MITHT im. M.V. Lomonosov. 2013. [In Russian].
- Sheka I.A., Karlysheva K.F. Khimiya gafniya [Chemistry of hafnium]. Kiev: Naukova dumka. 1972. [In Russian].
- Flengas S.N., Pint P. Potential chloride electrolytes for recovering the metals Ti, Zr and Hf by fused salt electrolysis // Canad. Metallurg. Quart. 1969. 8. № 2. P. 151−166.
- Flengas S.N., Block‒Bolten A. Solubilities of reactive gases in molten salts. In: Advances in molten salt chemistry. Braunstein, G. Mamantov, and G. P. Smith, Eds., New York: Plenum Press, 1973. 2. P. 27–81.
- Howell L.J., Sommer R.C., Kellogg H.H. Phase diagram and vapor pressure in the systems NaCl–ZrCl₄, KCl–ZrCl₄, and NaCl–KCl (1:1 molar) –ZrCl₄ // J. Metals. 1957. 9. № 1. P. 193–200.
- Kim J.D., Spink D.R. Vapor pressure in systems sodium chloride−potassium chloride(8:29 molar) − zirconium tetrachloride and sodium chloride‒potassium chloride(8:29 molar) − hafnium tetrachloride // J. Chem. Eng. Data. 1974. 19. № 1. P. 36−42.
- Smirnov M.V., Salyulev A.B., Kudyakov V.Ya. Thermodynamic properties and decomposition potential of HfCl4 solutions in molten alkali chlorides and their mixtures // Electrochim. Acta. 1984. 29. № 8. P. 1087–1100.
- Salyulev A.B., Potapov A.M. Electrical conductivity of ZrCl₄ solutions in molten LiCl, NaCl−KCl (1:1) and HfCl4 solutions in molten KCl // Z. Naturforsch. 2022. 77a. № 10. P. 941−948.
- Salyulev A.B., Khokhlov V.A., Redkin A.A. Electrical conductivity of low‒temperature NaCl−KCl−ZrCl₄ melts // Russ. Metallurgy (Metally) 2014. 2014. № 8. P. 659−663.
- Salyulev A.B., Potapov A.M. Electrical conductivities of low‒temperature KCl−ZrCl₄ and CsCl−ZrCl₄ molten mixtures // Z. Naturforsch. 2018. 73a. № 3. P. 259−263.
- Salyulev A.B., Potapov A.M. Electrical conductivity of zirconium tetrachloride solutions in molten sodium, potassium and cesium chlorides // Z. Naturforsch. 2019. 74a. № 10. P. 925−930.
- Salyulev A.B., Potapov A.M. Electrical conductivity of ZrCl₄ solutions in the molten LiCl−KCl eutectic mixture // Russ. Metallurgy (Metally). 2024. 2024. № 8. P. 204 −210.
- Salyulev A.B., Khokhlov V.A., Moskalenko N.I. Electrical conductivity of KAlCl4−ZrCl₄ molten mixtures // Russ. Metallurgy (Metally). 2017. 2017. № 2. P. 95−99.
- Smirnov M.V., Stepanov V.P., Khokhlov V.A. Ionic structure and physicochemical properties of molten halides // Rasplavy. 1988. № 1. P. 51−59.
- Kirillov S.A., Pavlatou E.A., Papatheodorou G.N. Instantaneous collision complexes in molten alkali halides: Picosecond dynamics from low‒frequency Raman data // J. Chem. Phys. 2002. 116. № 21. P. 9341−9351.
- Wang J., Wu J., Lu G., Yu J. Molecular dynamics study of the transport properties and local structures of molten alkali metal chlorides. Part III. Four binary systems LiCl–RbCl, LiCl–CsCl, NaCl–RbCl and NaCl–CsCl // J. Mol. Liq. 2017. 238. P. 236–247.
- Van Artsdalen E.R., Yaffe I.S. Electrical conductance and density of molten salt systems: KCl−LiCl, KCl−NaCl and KCl−KI // J. Phys. Chem. 1955. 59. № 2. P. 118−127.
- Janz G.J. Thermodynamic and transport properties for molten salts // J. Phys. Chem. Ref. Data. 1988. 17. № 2. P. 1–325.
- Salyulev A.B., Potapov A.M. Electrical conductivity of (LiCl−KCl)eut. −SrCl2 molten mixtures // J. Chem. Eng. Data. 2021. 66. № 12. P. 4563−4571.
- Potapov A.M., Rycerz L., Gaune‒Escard M. Electrical conductivity of melts containing rare‒earth halides. I. MCl–NdCl3 (M = Li, Na, K, Rb, Cs) // Z. Naturforsch. 2007. 62a. № 7. P. 431–440.
- Salyulev A.B., Khokhlov V.A., Moskalenko N.I. Elektroprovodnost’ rasplavlennykh smesey KAlCl4–ZrCl₄ v shirokom intervale temperatur [Electrical conductivity of molten KAlCl4–ZrCl₄ mixtures in a wide temperature range] // Rasplavy. 2018. № 6. P. 674–681. [In Russian].
- Salyulev A.B., Kornyakova I.D. Spektry kombinatsionnogo rasseyaniya rasplavlennogo i paroobraznogo tetrakhlorida tsirkoniya [Raman spectra of molten and vaporous zirconium tetrachloride] // Rasplavy. 1994. № 2. P. 60−64. [In Russian].
- Photiadis G.M., Papatheodorou G.N. Vibrational modes and structure of liquid and gaseous zirconium tetrachloride and of molten ZrCl₄–CsCl mixtures // J. Chem. Soc., Dalton Trans. 1998. № 6, P. 981–989.
- Salyulev A.B., Redkin A.A. Izmereniye elektroprovodnosti rasplavlennykh ZnCl2, PbCl2, NiCl2, ZrCl₄ i HfCl4 pri povyshennom davlenii parov [Electrical conductivity measurement of fused ZnCl2, PbCl2, NiCl2, ZrCl₄, and HfCl4 at high vapor pressure] // Rasplavy. 1996. № 3. P. 20–27. [In Russian].
- Salyulev A.B., Potapov A.M. Conductivity of some molten chlorides at elevated temperatures II. Electrical conductivity of molten chlorides (InCl3, ZrCl₄, HfCl4) with negative temperature coefficients // J. Chem. Eng. Data. 2021. 66. № 1. P. 322−329.
- Shannon R.D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides // Acta Crystallogr. 1976. A 32. P. 751−767.
- Kipouros G.J., Flint J.H., Sadoway D.R. Raman spectroscopic investigation of alkali‒metal hexachloro compounds of refractory metals // Inorg. Chem. 1985. 24. № 23. P. 3881−3884.
- Salyulev A.B., Zakir’yanova I.D., Vovkotrub E.G. Issledovaniye produktov vzaimodeystviya ZrCl₄ i HfCl4 s khloridami shchelochnykh metallov i s pentakhloridom fosfora metodom spektroskopii KR [Investigation of reaction products of ZrCl₄ and HfCl4 with alkali metal chlorides and phosphorus pentachloride by Raman spectroscopy] // Rasplavy. 2012. № 5. P. 53−61. [In Russian].
- Howell L.J., Kellogg H.H. Electrical conductivity of melts in the systems NaCl – ZrCl₄ and NaCl – KCl (1:1 molar) – ZrCl₄ // Trans. Metallurg. Soc. of AIME. 1959. 215. № 2. P. 143–145.
- Kim J.D., Spink D.R. Vapor pressure in systems NaCl – KCl (8:29 molar) – ZrCl₄ and NaCl – KCl (8:29 molar) – HfCl4 // J. Chem. Eng. Data. 1974. 19. № 1. P. 36–42.
- Katyshev S.F., Teslyuk L.M. Conductivity of molten LiF–ZrF4, NaF–ZrF4, KF–ZrF4, RbF–ZrF4, and CsF–ZrF4 systems // Russ. J. Electrochem. 2009. 45. № 7, P. 823–827.
- Daněk V. Physico‒chemical analysis of molten electrolytes. Amsterdam, Boston, Heidelberg et al.: Elsevier. 2006.
- Niselson L.A., Egorov E. A., Chuvilina E.L., Arzhatkina O.A., Fedorov V.D. Solid‒liquid and liquid‒vapor equilibria in the Zr(Hf)Cl4–KAlCl4 systems: A basis for the extractive distillation separation of zirconium and hafnium tetrachlorides // J. Chem. Eng. Data. 2009. 54. № 3. P. 726–729.
- Panfilov A.V., Korobkov A.V., Buzmakov V.V., Tereshin V.V., Ivshina A.A., Abramov A.V., Danilov D.A., Chukin A.V., Polovov I.B. Izucheniye sostava rasplava KCl–AlCl3 –ZrCl₄ –HfCl4 primenitel’no k ekstraktivnoy rektifikatsii khloridov tsirkoniya i gafniya [Study of the composition of the KCl–AlCl3 ZrCl₄–HfCl4 melt in relation to extractive rectification of zirconium and hafnium chlorides] // Rasplavy. 2024. № 2. P. 211−222. [In Russian].
- Ivanovskii L.E., Khokhlov V.A., Kazantsev G.F. Fizicheskaya khimiya i elektrokhimiya khloraliuminatnykh rasplavov [Physical chemistry and electrochemistry of chloroaluminate melts]. М.: Nauka Publ. 1993. [In Russian].
- Salyulev A.B., Potapov A.M., Moskalenko N.I. Electrical Conductivity of ZnCl2–ZrCl₄ molten mixtures // Russ. Metallurgy (Metally). 2015. 2015. № 2. P. 97−102.
- Kalampounias A.G., Papatheodorou G.N., Yannopoulos S.N. Light scattering from glass‒forming molten salts // Z. Naturforsch. 2002. 57A. № 1‒2. P. 65–70.
- Nanjo M., Kanai T. Electrical conductivity of binary melts containing AlCl3, FeCl3, ZnCl2, MgCl2, NaCl and KCl // Proc. of the First Intern. Symposium on Molten Salt Chemistry and Technology. Kyoto, Japan. 1983. P. 253–256.
Supplementary files
